SC|M

Studies in Communication and Media

RESEARCH-IN-BRIEF

Establishing standards for human-annotated samples applied in
supervised machine learning — Evidence from a Monte Carlo
simulation

Manuelle Inhaltsanalysen fiir das maschinelle Lernen — Etablierung
von Standards durch eine Monte-Carlo-Simulation

Corinna Oschatz, Marius Séiltzer & Sebastian Stier

Studies in Communication and Media, 12.Jg,, 4/2023, 5. 289—304, DOI: 10.5771/2192-4007-2023-4-289 289

https://dol.c 4-289 - am 03,02.2026, 00:09:54, Jdela O


https://doi.org/10.5771/2192-4007-2023-4-289
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-nd/4.0/

Corinna Oschatz (Ass.-Prof. Dr.), University of Amsterdam, Amsterdam School of Commu-
nication Science (ASCoR), Postbus 15791, 1001 NG Amsterdam, The Netherlands. Contact:
c.m.oschatz@uva.nl

Marius Séltzer (Prof. Dr.), University of Oldenburg, Institute for Social Sciences, Depart-
ment of Digital Social Science, Ammerlander HeerstralRe 114-118, 26129 Oldenburg, Germa-
ny. Contact: marius.saeltzer@uol.de

Sebastian Stier (Prof. Dr.), GESIS — Leibniz Institute for the Social Sciences, Department
Computational Social Science, Unter Sachsenhausen 6-8, 50667 Cologne, Germany / Pro-
fessor for Computational Social Science, School of Social Sciences, University of Mannheim,
Mannheim, Germany. Contact: sebastian.stier@gesis.org

290 SCM, 12.Jg., 4/2023

https://dol.org/10.5771/2192-4007-2023-4-289 - am 03.02.2026, 00:09:54. /dele i@y oo



mailto:c.m.oschatz@uva.nl
mailto:marius.saeltzer@uol.de
mailto:sebastian.stier@gesis.org
https://doi.org/10.5771/2192-4007-2023-4-289
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:c.m.oschatz@uva.nl
mailto:marius.saeltzer@uol.de
mailto:sebastian.stier@gesis.org

RESEARCH-IN-BRIEF

Establishing standards for human-annotated samples applied in
supervised machine learning — Evidence from a Monte Carlo
simulation

Manuelle Inhaltsanalysen fiir das maschinelle Lernen —
Etablierung von Standards durch eine Monte-Carlo-Simulation

Corinna Oschatz, Marius Sdltzer & Sebastian Stier

Abstract: Automated content analyses have become a popular tool in communication sci-
ence. While standard procedures for manual content analysis were established decades
ago, it remains an open question whether these standards are sufficient for the use of hu-
man-annotated data to train supervised machine learning models. Scholars typically follow
a two-stage procedure to obtain high prediction accuracy: manual content analysis fol-
lowed by model training with human-annotated samples. We argue that a loss in predic-
tion accuracy in supervised machine learning builds up over this two-stage procedure. In a
Monte Carlo simulation, we tested (1) human coder errors (random, individual systematic,
joint systematic) and (2) curation strategies for human-annotated datasets (one coder per
document, majority rule, full agreement) as two sequential sources of accuracy loss of au-
tomated content analysis. Coder agreement prior to conducting manual content analysis
remains an important quality criterion for automated content analyses. A Krippendorff’s
alpha of at least 0.8 is desirable to achieve satisfying prediction results after machine learn-
ing. Systematic errors (individual and joint) must be avoided at all costs. The best training
samples were obtained using one coder per document or the majority coding curation
strategy. Ultimately, this paper can help researchers produce trustworthy predictions when
combining manual coding and machine learning.

Keywords: Supervised machine learning, prediction accuracy, impact of coder errors, impact
of curation strategies, Monte Carlo simulation.

Zusammenfassung: Automatisierte Inhaltsanalysen sind ein hdufig genutztes Instrument zur
Beantwortung kommunikationswissenschaftlicher Forschungsfragen. Wihrend Standards
fiir die manuelle Inhaltsanalyse bereits vor Jahrzehnten etabliert wurden, bleibt zu kliren,
ob diese Standards fiir den Einsatz manuell generierter Daten im maschinellen Lernen aus-
reichen. Wissenschaftler folgen in der Regel einem zweistufigen Verfahren, um mit ihren
Modellen qualitativ hochwertige Vorhersagen zu treffen: eine manuelle Inhaltsanalyse, gefolgt
von einem Modelltraining mit diesen handcodierten Daten. Bei diesem Vorgehen kénnen
allerdings Verzerrungen entstehen, die wir in einer Monte-Carlo-Simulation identifizieren.
Simuliert werden (1) Kodierfehler (zufallig, individuell systematisch, gemeinsam systematisch)
und (2) Kuratierungsstrategien (ein Kodierer pro Dokument, Mehrheitsregel, vollstindige

291

https://dol.org/10.5771/2192-4007-2023-4-289 - am 03.02.2026, 00:09:54. /dele i@y oo



https://doi.org/10.5771/2192-4007-2023-4-289
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by-nc-nd/4.0/

RESEARCH-IN-BRIEF

Ubereinstimmung) als zwei aufeinanderfolgende Fehlerquellen. Die Ergebnisse zeigen, dass
die Ubereinstimmung der Codierer vor der manuellen Inhaltsanalyse ein wichtiges Quali-
tatskriterium fiir automatisierte Inhaltsanalysen bleibt. Koeffizienten von mindestens
Krippendorff’s Alpha = .8 sind wiinschenswert, um zufriedenstellende Vorhersageergebnis-
se durch maschinelles Lernen zu erzielen. Systematische Fehler der Codierer (individuelle
und gemeinsame) miissen unbedingt vermieden werden. Die besten Ergebnisse erzielen die
Kurationsstrategien ,,ein Kodierer pro Dokument“ oder ,,Mehrheitscodierung®. Die Studie
dient Forschern dazu, zuverldssige Vorhersagen beim Einsatz manueller Inhaltsanalysen im
maschinellen Lernen zu erzielen.

Schlagworter: Supervised machine learning, Genauigkeit der Vorhersagen, Einfluss von

Kodierfehlern, Einfluss von Kuratierungsstrategien, Monte Carlo Simulation.

1. Introduction

Establishing intercoder reliability is
“near the heart of content analysis; if
the coding is not reliable, the analysis
cannot be trusted” (Singletary, 1994, p.
294). This often-quoted statement illus-
trates the relation of the two essential
quality criteria of content analysis — re-
liability and validity. Reliability! refers
to the reproducibility of results (e.g.,
Krippendorff, 2004; Lombard et al.,
2002). It is measured as agreement
among coders and achieved when they
reach consistent judgements on identical
(media) messages. Validity refers to the
“empirical truth” (Krippendorff, 1980,
p. 71). It is the agreement of an empir-
ical measurement with a measurement
concept. However, validity cannot be
measured directly. Instead, it is inferred
from consistently reproduced data (high
reliability) that are assumed to accurate-
ly describe the population of messages
(high validity). Based on this theoretical
linearity, intercoder reliability is used as
an empirical proxy for valid results that
can — in Singletary’s (1994) words — be
trusted.

1 The glossary for all italic terms can be found on
OSF (https://osf.io/rkuj5/).
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In past decades, it has been fiercely
debated how reliability can be measured
appropriately to ensure validity (e.g.,
Feng, 2014; Krippendorff, 2004; Lom-
bard et al., 2002; Zhao et al., 2013).
Despite the central importance of inter-
coder reliability as a quality criterion in
manual content analysis, scholars rely on
relatively vague coefficient benchmarks
ranging from >.60 to 2.90, depending on
the research context (Geif$, 2021; Lom-
bard et al., 2002; Neuendorf,2017; Zhao
etal.,2013). While such conventions have
become widely established when con-
ducting manual content analysis, the
discussion of appropriate reliability cri-
teria has gained new attention with the
increasing popularity of automated con-
tent analysis (e.g., Grimmer & Stewart,
2013; Krippendorff, 2021; Song et al.,
2020). However, social scientists will not
be able to abandon manually coded data
because (semi-)supervised machine learn-
ing depends on high-quality human an-
notations as training data to learn the
meaning of texts (Grimmer et al., 2021;
Grimmer & Stewart, 2013; Nelson et al.,
2021; Seb6k et al., 2022; van Atteveldt
et al., 2021; Wu et al., 2022).

Scholars typically follow a two-stage
procedure to obtain accurate predictions
in machine learning. The first step is a
manual content analysis based on inten-
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sive coder training to establish sufficient
agreement among carefully selected (e.g.,
Stoll et al., 2020) or crowdsourced coders
(e.g., Budak et al., 2021). In the second
step, the human-annotated training data-
set is constructed, and the algorithm is
trained and validated (Grimmer et al.,
2021, p. 398). Coder agreement prior to
the manual content analysis has been
identified as the most important factor to
secure valid predictions of a machine
learning algorithm that aims to classify
text into “positive” and “negative” exam-
ples (Baden et al.,2022, p. 14; Song et al.,
2020, p. 558). The accuracy of such pre-
dictions is often evaluated via the F1 score,
which is the harmonic mean of precision
(the share of correctly classified positive
examples) and recall (the share of correct-
ly classified text among the total number
of positive examples = sensitivity). How-
ever, recent work indicates that the relation
of high coder agreement prior to data
collection (high reliability) and the accu-
racy of computational predictions (F1
score) is not linear (Saeltzer et al., 2022;
Viehmann et al., 2022).

We argue that the loss in prediction
accuracy builds over the two-stage pro-
cedure of automated content analysis.
We consider two sequential sources of
accuracy loss that affect the quality of
the training data: (1) Coder errors (ran-
dom, individual systematic, joint sys-
tematic errors) measured as small dis-
agreements that are overall considered
sufficiently reliable for manual content
analysis but scale up when used on big
data. (2) The curation of the human-an-
notated dataset, i.e., the allocation of
documents to human coders (one coder
per document, majority rule, full agree-
ment), impacts the range of positive
cases included in the sample from which
an algorithm can learn. Both can lead
to flawed training data with reduced

https://dol.org/10.5771/2192-4007-2023-4-289 - am 03.02.2026, 00:09:54.

quality that does not represent the “em-
pirical truth” (Krippendorff, 1980, p.
71). The results of machine learning are
then evaluated against this empirical
truth, resulting in a seemingly direct test
metric of validity. Since training and test
sets are typically derived from the same
sample, a flawed human-annotated sam-
ple can result in high F1 scores, without
necessarily being valid.

The goal of this paper is to test wheth-
er benchmarks and decisions currently
applied in supervised machine learning
produce valid predictions at scale for
binary classifiers. We build on and con-
nect previous works that examine the
quality requirements of manual (e.g.,
Geif3, 2021) and automated (e.g., Song
et al., 2020) content analyses. We con-
duct a Monte Carlo simulation to test
our assumptions. Our contribution can
help researchers produce trustworthy
predictions when combining manual
coding and machine learning.

2. Current standards affecting the
quality of automated content
analysis

2.1 Quality of the coding

Geifs (2021, p. 65) differentiates three
types of coder errors: random individual
errors, systematic individual errors, and
joint systematic errors. While all error
types are addressed in coder training and
by randomly assigning materials to res-
pective coders (Maurer & Reinemann,
2006; Rossler, 2017), they can affect the
F1 score of predictions at scale.

2.1.1 Random individual errors

Random individual errors emerge when
coders are occasionally inattentive. Ge-
nerally, they have well understood the
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phenomenon examined and follow the
instructions documented in the code-
book. However, coding a large amount
of data can lead to sloppiness (“coder
fatigue” Potter & Levine-Donnerstein,
1999, p. 271). This means that human
coders incorrectly but randomly label
text as a false-positive or false-negative
example. False-positive labels (= incor-
rectly identified as a member of the class)
lead to reduced precision of the predic-
tions. False-negative labels (= incorrect-
ly identified as not being a member of
the class) lead to reduced recall. Such
errors do not affect inferences about
reality but lead to noisy predictions when
applied to machine learning.

2.1.2 Systematic individual errors

Predominantly for latent content, how-
ever, it is more likely that coders produ-
ce systematic individual errors due to
personal routines, attitudes, and heuris-
tics (Geifs, 2021, p. 65). Potter and Le-
vine-Donnerstein (1999, pp. 259-261)
differentiate two types of latent content:
pattern content and projective content.
Pattern content assumes that there is an
objective pattern that all coders can un-
cover based on symbols and cues. Such
coding decisions are then based on the
coders’ experience and prior knowledge
and might lead to judgment bias. For
example, partisanship has been found to
substantially affect an individual’s judg-
ment of political contexts and situations
(Bakker et al., 2020; Kim, 2018). Thus,
messages from political actors close to a
coder’s position might be coded more
positively than messages from an actor
of the opposing political spectrum. Pro-
jective content “shifts the focus more
onto coders’ interpretations of the me-
aning of the content” (Potter & Levine-
Donnerstein, 1999, p. 259). Coders use
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schemas to interpret messages. For ex-
ample, concepts such as incivility are
judged against one’s own standards (e.g.,
Nai & Maier, 2021). A comment might
be judged as uncivil by one coder and as
merely impolite by another. Coders might
thus also vary in their sensitivity to detect
latent variables. As it is impossible to
discuss all facets and semantic appearan-
ces of a target concept during coder trai-
ning, the likelihood of sensitivity bias
increases with the size of the dataset and
difficulty of the examined concept.

2.1.3 Joint systematic errors

Joint systematic errors are most proble-
matic for machine learning, as they are
not identifiable through reliability mea-
sures. Such errors might occur due to a
lack of clarity in the codebook (e.g.,
missing definitions/examples), insufficient
coder training, or “interpretative con-
gruence” (Potter & Levine-Donnerstein,
1999, p. 271) when coders share inter-
pretative schemas for coding projective
latent content. Joint systematic errors
can also occur over time (stability of re-
liability; Krippendorff, 1980, p. 71) du-
ring the coding process if coders do not
code independently or simply become
more/less sensitive toward the concepts
examined due to greater familiarity with
the task and the material. In this case,
reliability tests will document high coder
agreement, but the human annotations
deviate from the empirical truth. While
previous literature has acknowledged the
presence of these three error types (Geifs,
2021), it has not yet considered to what
extent they affect the relation between
coder reliability and model performance.

RQ1: What is the relation between
reliability and validity (F1 scores),
given different types of coder errors?

SCM, 12.)g., 4/2023
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2.2 Curation of the training dataset

The decision on curation strategies is
essential, as it determines what data are
used for training and validation. There
are several options (Barberd et al., 2021)
We focus on the consequences of three
curation strategies: one coder per docu-
ment, majority rule, or full agreement.
These strategies differ in their conse-
quences for the sample size and repre-
sentativeness of the cases included in the
human-annotated sample. Researchers
typically aim to maximize their human
coders’ tasks according to the budget,
i.e., most projects have a predefined sam-
ple size when coding begins. After suf-
ficient agreement has been established
among coders, a share of documents
(e.g., social media posts) is randomly
assigned to the human coders. When the
one coder per document strategy is used,
each coder receives a unique subsample,
thereby maximizing the size of the hu-
man-annotated sample. In contrast,
when applying the majority rule or full
agreement, all coders receive the same
subsample. At least three coders are re-
quired to apply the majority rule, accor-
ding to which the code assigned by most
coders is included in the training dataset.
Even more strictly, complete correspon-
dence between coder decisions is requi-
red when the full agreement rule is ap-
plied. Thus, the full agreement rule
results in the smallest human-annotated
sample given a predefined sample size.

Moreover, while improving the inter-
nal consistency and substantive quality
of the sample compared to a one coder
per document strategy, the majority and
full agreement rules reduce its represen-
tativeness. This is particularly pro-
nounced for full agreement, as only the
‘easiest’ and ‘indisputable’ cases are used
for training. Consequently, the classifier

https://dol.org/10.5771/2192-4007-2023-4-289 - am 03.02.2026, 00:09:54.

will not see the more difficult cases as
they are absent from the training dataset
(Krippendorff, 2018, p. 285). The con-
sequences of curation decisions have not
yet been properly reflected, especially in
conjunction with the different types of
coder errors.

RQ2: To what extent do different
curation strategies lead to over/
underestimation of F1 scores,
given different types of coder
errorss

3. The simulation study

To test our assumptions, we conducted
a Monte Carlo simulation, which is a
useful approach to evaluate the impli-
cations of diverse options in complex
models (e.g., Geif$, 2021; Scharkow &

Bachl, 2017). We proceeded in the fol-

lowing stepwise workflow:

I. Simulating a dataset with realistic
characteristics (Dataset generation).

II. Simulating human annotators, in-
ducing three error types (Quality of
the coding).

III. Comparing Krippendorff’s alpha as
a broadly used reliability coefficient
in communication science with F1
scores (RQ1).

IV. Testing how different curation strat-
egies induce bias in our ability to
correctly observe the performance
of the machine learning classification

(RQ2).

3.1 Dataset generation ()

We simulate a binary dependent variable
(concept absent = 0, present = 1), i.e.,
the empirical truth that researchers in
reality cannot observe, and assign three
parameters to the simulation:
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e nis the number of data points to be
“annotated”,

e pis the prevalence of the target cat-
egory, which we keep constant at 0.2,

e Couvars are the characteristics of the
document that relate to the true
coding and must be interpreted by
coders. We approximate this rela-
tionship by giving the covariates
random (between -1 and 1) influ-
ences on the Y label (= dependent
variable/true coding).

3.2 Quality of the coding (1)
3.2.1Random individual errors

We simulate 21 error levels, ranging from
0 to 2.2 In this way, we generate a vari-
ation in Krippendorff’s alpha simulta-
neously with a change in F1 scores. In
other words, we do not directly manip-
ulate the alpha but model the factors
that cause it. In all simulations, we observe
how central metrics change by adding
random errors in a symmetric manner.
In formal terms, coders producing ran-
dom errors can be described as:

3.2.2 Individual and joint systematic
errors

For each coder, we manipulate how they
code different features of the document.
In a mathematical sense, coders make
their decisions not with a true coefficient,

2 The simulation function requires a random er-
ror term for the coders. It should vary between
0 and 2, as 1 indicates a random classifier with
an F1 of .5. We vary the amount of random
error from 0 to 2 to also achieve low F1 scores
and alphas. We separate the values from 0 to
2 into 21 bins (0.1, 0.2 etc.).
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as defined during data generation, but
with a biased estimator. They will over-
or underestimate the effect of the visible
characteristics of a specific category:

Coders are not homogeneous actors but
have idiosyncrasies. If several coders
with uncorrelated biases predict the same
variable, the means cancel out. If these
biases are correlated, this is not the case.
For modeling these scenarios, we use 3
covariates and 5 coders, allowing for 3
variable-based biases. The fourth column
is the random error. These specifications
enable us to generalize coder biases in
a succinct form. If all coders have a
random error, the matrix looks like this:

Now, we add variable-based biases that
might cancel each other out

or they might be correlated, i.e., the
coders observe reality in a similarly
distorted fashion.

SCM, 12.)g., 4/2023
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3.3 Comparing Krippendorff and F1 (111)

To investigate RQ1, we plot different
levels of coder agreement against the
F1 score, given different types of coder
errors (see II). Every simulation is con-
ducted 1,000 times with 1,000 documents.
The number of covariates is set to 3,
and the number of coders is 5. In total,
we ran 63,000 simulations: 21,000 (21
error levels * 1000 iterations) * 3 (error
structures) with 2000 codings each (=
full simulated dataset). For the presen-
tation of results, we focus on visual
inference in graphical form.

3.4 Simulating curation strategies (IV)

In the final step, we tested the impact
of the coding errors when these data
were used in machine learning (Figure
1). We simulated how three curation
strategies affect our ability to assess
the actual performance of a machine
learning model, which enables us to
evaluate the TRUE F1 score (coder
annotations compared against the
simulated - in reality unobservable —
empirical truth) in contrast to the
OBSERVED F1 score (coder annotations
compared against the test set during
supervised machine learning, which
might differ from the empirical truth)
after curation.

Our strategy involves splitting the
dataset into three subsamples (holdout
dataset, training dataset, and test data-
set). We now elaborate on the process
in detail. First, we sample (10%) a
holdout dataset from the full simulated
dataset (A). On the remaining full sim-
ulated dataset (90%), we perform a
train/test split (70/30) and train a ma-
chine learning model, i.e., a logistic
regression model on the covariates we

https://dol.org/10.5771/2192-4007-2023-4-289 - am 03.02.2026, 00:09:54.

simulated for the coding process (B).3
We use this model to predict the test
set. The performance of this model on
the test data is the OBSERVED F1 score
(Single Coder Model in Figure 1) (C).
Then, we predict the holdout set (D).
This is the TRUE F1 score. The differ-
ence between OBSERVED and TRUE
performance is the mean absolute pre-
diction error (MAPE), “to what degree
observed F1 scores deviate from true
F1 scores — when using the observed F1
score as the best possible “prediction”
of the true F1 score” (Song et al., 2020,
p.557) (E). Next, we apply the curation
strategies to the data that are split into
training/test data (Majority/Full agree-
ment Coder Model in Figure 1). We
apply the same procedure as in (C) and
(D). The difference between these ex-
periments is the effect of curation on
MAPE and the misinterpretation of the
OBSERVED model performance against
the TRUE model performance.

3 Any other machine model can be used. We
chose the simplest model that best fits the
binary coding process with a limited number
of covariates
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Figure 1. Workflow of the MAPE estimation

Note. MAPE is the difference between the observed F1 score and true F1 score.

4. Results

4.1 RQi: The relationship between
reliability and validity

Figure 2 shows how the relationship
between coder reliability (different levels
of Krippendorff’s alpha) and the predic-
tion accuracy (true F1 scores) differs
given the three types of coder errors.
Both Krippendorff’s alpha and F1 scores
are functions of the coding errors. Ran-
dom individual errors (green), system-
atic individual errors (blue), and joint
systematic errors (red) can still lead to
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acceptable Krippendorff’s alpha levels,
but they differ to varying degrees from
the true F1 scores. Joint systematic errors
affect the F1 score negatively across all
levels of alpha. Interrater tests therefore
indicate high reliability in terms of alpha
values but miss systematic performance
problems. The less intuitive finding is
that if errors are systematic but compen-
sating between individuals (as we would
expect for uncorrelated errors on average),
the F1 score is even better at all alpha
levels than random errors.

SCM, 12.)g., 4/2023
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Figure 2. Relation between reliability (Krippendorff’s alpha) and validity
(true F1 scores) given different types of coder errors

4.2 RQ2: The effects of curation
strategies on F1 scores

Next, we focus on the effects of common
strategies to curate coded training data
for supervised machine learning (Figure
3). On the x-axis, we display the reli-
ability of the coded dataset before cura-
tion, produced by introducing random
errors. We focus on variations along
alpha values of at least 0.4, as realisti-
cally, researchers would not train ma-
chine learning models based on data
with lower reliability values. The y-axis
shows the MAPE prediction errors, more
precisely, the weighted differences be-
tween the true F1 score and the observed
F1 score for different researcher strate-

https://dol.org/10.5771/2192-4007-2023-4-289 - am 03.02.2026, 00:09:54.

gies. The MAPE is normalized by divid-
ing it by the fluctuating # in each simu-
lation, as full agreement reduces the
sample size depending on the amount
of coder errors. Therefore, normalization
of the y-axis is necessary to make the
different samples comparable.

We simulate how three common
practices of curating the training dataset
(one coder per document, majority rule,
full agreement) affect the training and
validation upon the occurrence of random
and joint systematic errors. As one would
expect, MAPE converges to 0 in all three
cases when the reliability of the coding
(alpha) improves. Both majority rule and
one coder per document tend to result
in slight underestimation of the actual
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model performance (positive MAPE). A
lack of reliability in coding intensifies
this underestimation. Nonetheless, these
false negatives are less consequential in
practice than the relatively larger over-
estimation of model performance (neg-
ative MAPE) when only taking the codes
with full agreement into account. The
errors of full agreement are most con-
sequential, as positive values of MAPE
indicate that the observed F1 score is
higher than the true F1 score. For better
interpretation, the values on the Y-axis
can be interpreted as follows when re-

adjusting the MAPE values based on the
number of simulated cases for one con-
crete scenario: given that the reliability
is alpha =.4, joint systematic errors (in
red) under the full agreement rule could
lead to a true F1 score that is up to .5
lower than the observed F1 score report-
ed in a validation, and on average, the
observed F1 score is .15 to .2 higher
than the true F1 score. Full agreement
therefore overestimates the validity of a
machine learning model, leading to
false-positive results.

Figure 3. MAPE given three different dataset curation strategies, different types
of coder errors and levels of reliability (Krippendorff’s alpha)
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As two further robustness tests, we used
the Brennan-Prediger coefficient instead
of Krippendorff’s alpha, and in another
full iteration of the analysis, we repeat-
ed all analyses simulating 3 instead of 5
coders. The results of the two robustness
tests in the supplementary material on
OSF are very similar to the findings
reported in the main paper.

5. Discussion and recommendation

This simulation study contributes to our
understanding of the requirements of
manually coded training data applied in
supervised machine learning. We exam-
ined how coder errors (random, individ-
ual systematic, joint systematic) and
researcher decisions on sample curation
(one coder per document, majority rule,
full agreement) affect the accuracy of
predictions at scale. The simulation
yields two main results: (1) Error types
differentially affect Krippendorff’s alpha
and the true F1 score. In line with pre-
vious research (Song et al., 2020), we
show that coder agreement prior to con-
ducting the manual content analysis
remains an important quality criterion
for automated content analyses. A Krip-
pendorff’s alpha of at least .8 is desirable
to achieve satisfying prediction results
after machine learning. Systematic errors
(individual and joint) must be avoided
at all costs. To our knowledge, the sim-
ulation reveals for the first time the effect
of a systematic error that researchers are
usually not aware of. One practical way
to reduce judgment biases (e.g., due to
a coders’ political orientation or gender)
is to provide the coding material in the
most anonymous way possible. We have
had good experience using a shiny app
database that allocates the text of social
media posts to coders without disclosing
the source of the post (Saeltzer et al.,

https://dol.org/10.5771/2192-4007-2023-4-289 - am 03.02.2026, 00:09:54.

2022).If coders are suspected of sharing
political leanings, it might also make
sense to find additional coders that can-
cel out these biases. Moreover, the da-
tabase approach ensures random allo-
cation of posts, as coders can only see
one post at a time and cannot self-select
certain posts (e.g., coding short posts
first, coding all posts including the same
picture at once). (2) Using the full agree-
ment rule to curate a sample is the least
preferable curation strategy. This leads
to overconfidence in predictions (false
positives), presumably because only sim-
ple and indisputable cases are detected
(and validated). We thus recommend
using either one coder per document (see
also the recommendation by Barberi et
al., 2021, p. 30) or the majority rule to
include borderline cases that will be
highly insightful for the learning algo-
rithm (also see Card & Smith, 2018, p.
1644). A researcher must have a clear
idea of the required sample size of the
human-annotated sample. In the case of
insufficient agreement among the coders,
additional subsamples must be coded to
fulfill the sample size requirements. Com-
municating such requirements to human
coders might even increase their atten-
tiveness and reduce random errors.
While the advent of large language
models (LLMs) appears to have aided
researchers in scaling up automated
content analysis (Tornberg, 2023) reli-
ability and bias of the Large Language
Model (LLM, this by no means invalidates
these findings. LLMs depend less on
training data, but using them for scien-
tific research requires transparency about
potential errors that only manual anno-
tation and the respective reliability
measures can provide. If these annotations
follow the same problems as discussed
in this paper, understanding their effect
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on validity remains central in the age of
LLMs as well (Reiss, 2023).

We would also like to address limita-
tions that have potential for future
(simulation) studies. The findings are
based on specific parameters we deemed
realistic but might have to be adjusted
in other research contexts. We share
replication materials that enable research-
ers to probe the effects of specific con-
figurations that might better represent
their data (https://osf.io/rkuj5/). Finally,
the patterns we identify usually become
of substantive relevance in subsequent
stages of analysis, namely, statistical
hypothesis testing. In future research, the
effect of systematic errors on downstream
analyses should be considered.

6. Conclusion

To conclude, agreement among coders is
central for valid predictions at scale. While
this is common knowledge to scholars
conducting content analysis, our standards
for achieving agreement must be revisited
with the increasing popularity of auto-
mated content analyses. We evaluated
common researcher decisions to generate
a human-annotated sample for machine
learning. The best training samples were
obtained using one coder per document
or majority coding. From such samples,
trusted conclusions that most accurately
describe the population of documents can
be obtained.
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