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ZUSAMMENFASSUNG Diese Arbeit untersucht die
Umsetzbarkeit verschiedener Klassifikationsalgorithmen zur
echtzeitfahigen, maschinenunabhédngigen Rattererkennung.
Basierend auf 136 Messungen werden zwei neue Klassifikati-
onsmethoden entwickelt, die eine Genauigkeit von durch-
schnittlich 92 % erreichen. Sie basieren auf einer einfachen
Messkette, die stabilitdtsrelevante Informationen aus einem
Beschleunigungssensor und einem Spindeldrehgeber bezieht
und somit flir die industrielle Praxis geeignet sind.
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1 Einleitung

Die steigende Nachfrage nach Bauteilen fiir die E-Mobilitit
stellt hohe Anforderungen an die Effizienz und Qualitit zerspa-
nender Fertigungsverfahren. Insbesondere bei der Bearbeitung
filigraner und funktionskritischer Komponenten, wie beispiels-
weise in Elektromotoren oder Batteriegehdusen, gewinnt die
Prozesssicherheit zunehmend an Bedeutung. In diesem Kontext
riickt die Friasbearbeitung als flexibles Fertigungsverfahren in den
Fokus. Hohe Zeitspanvolumina, anspruchsvolle Oberflichenquali-
titen sowie die Reduktion von Maschinen- und Werkzeugschiden
sind entscheidend, um die Anforderungen moderner Produkti-
onslinien in der E-Mobilitdt zuverldssig und skalierbar zu erfiil-
len.

Dabei stellen neben der Spindelleistung vor allem dynamische
Phianomene wie das regenerative Rattern wesentliche Einschrin-
kungen fiir die Produktivitiat in der Frésbearbeitung dar. Neben
Produktivititseinbufen [1] kann es durch Rattern auferdem zu
Qualititsmingeln am Werkstiick oder Maschinen- und Werk-
zeugschiden [2] kommen. Durch eine geeignete Wahl der
Prozessparameter ist es jedoch moglich, eine stabile, aber den-
noch produktive Bearbeitung zu gewihrleisten. Zur effizienten
Ermittlung dynamischer Stabilitdtsgrenzen kommen sensorbasier-
te Rattererkennungsalgorithmen zum Einsatz. Bisherige Ratterer-
kennungsmethoden sind jedoch hiufig abhangig von festgelegten
Grenzwerten, wobei Machine Learning (ML) Algorithmen Abhil-
fe schaffen konnen.

Trotz zahlreicher Forschungsarbeiten zur Online-Rattererken-
nung, die verschiedene Ansitze verfolgen, bleibt ihre Validierung
meist auf einen spezifischen Prozess beschrankt. Auch in [3] wird
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Machine-Transferable Online Chatter
Detection: Development and Evaluation
of ML Classifications

ABSTRACT This study investigates the feasibility of various
classification algorithms for real-time, machine-independent
instability detection in milling processes. Based on 136 measu-
rements with 5.6 million data points, two new classification
methods are developed, which achieve an average accuracy

of 92 %. They are based on a simple sensor setup that obtains
stability-relevant information from an acceleration sensor and
a spindle encoder, making them suitable for industrial applica-
tions.

betont, dass die Auswahl von Merkmalen und Grenzwerten stark
von den verwendeten experimentellen Randbedingungen abhingt.
Hier werden tiber 100 Verdffentlichungen zur Rattererkennung
miteinander verglichen.

Bild 1 fasst 16 exemplarische Publikationen zusammen, die
diese These stiitzen. Diese Arbeit (letzte Spalte in Bild 1) unter-
scheidet sich vor allem durch die Nutzung mehrerer Maschinen
und Werkzeuge, um die Ubertragbarkeit der hier entwickelten
Rattererkennung zu validieren.

2 Versuchsaufbau

Die im Rahmen dieser Arbeit gewonnenen Ergebnisse stiitzen
sich auf Messungen, die an vier verschiedenen Werkzeugmaschi-
nen durchgefithrt wurden: einer horizontalen 4-Achs-Maschine
mit erreichbaren Spindeldrehzahlen von bis zu 12 000 1/min und
einer B-Achse als Schenkrundtisch (A), einer High-Speed-Cut-
ting Maschine mit bis zu 30000 1/min und einer B-Achse als
Teil eines parallelkinematischen Vorsatzfriskopfes (B), einer ver-
tikalen Doppelspindel-Maschine mit bis zu 15000 1/min (C)
sowie einem vertikalen Bearbeitungszentrum mit bis zu
15000 1/min (D). Die Datenerhebung erfolgt nach dem gleichen
Verfahren mittels eines Beschleunigungssensors, der werkzeugnah
am Spindelgehiduse montiert ist. Dieser erfasst die Beschleunigung
in allen drei Raumrichtungen. Eine Ubersicht der Versuchsaus-
prigungen ist in der Tabelle dargestellt.

Insgesamt basieren die Ergebnisse dieses Beitrags auf 136
Versuchen, aus denen 5,6 Millionen verwertbare Datenpunkte
gewonnen wurden. Jeder Datenpunkt reprisentiert eine ab-
getastete Beschleunigungsamplitude in drei Raumrichtungen.
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Tabelle. Versuchsauspragung
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Werkzeuganzahl 2

Werkzeugtyp Schaftfraser und Messerkopf Schaftfraser Schaftfraser und Messerkopf Schaftfraser

Werkstlickmaterial Stahl Aluminium Aluminium, Stahl Stahl

Schnitttiefe 3-9,02 mm 2-9mm 1,56-2,4mm 1,2-2,6 mm

S Vollnut Voll-, Teilnut"in Gleich-, Voll-, Teilnut“in Gleich-, Vollnut
Gegenlauffrésen Gegenlauffrasen

Drehzahl 1.200 - 1.500 U/min 25.000 - 29.000 U/min 2.800 - 3.325 U/min 3.700 - 5.300 U/min

Abtastrate 5.120 Hz 51.200 Hz 5.120 Hz 5.120 Hz

Anzahl Messungen 38 19 72 7

Daraus ergeben sich 9387 relevante Batches. Ein Batch ist ein
Datenpaket, fiir das eine bindre Stabilititsbewertung vorgenom-
men wird, basierend auf den innerhalb von vier Spindel-
umdrehungen erfassten Datenpunkten. Insgesamt betrigt das
Stabilititsverhiltnis 38,4 % instabile zu 61,6 % stabile Batches.
Die Messungen umfassen sowohl hoch- als auch niederfrequente
Ratterfrequenzen.

3 Labelmethode

Die Grundlage fiir die Entwicklung und Beurteilung mehrerer
ML- und weiterer Klassifikationsmethoden ist das Labeln der
Messdaten. Dabei werden die Labelergebnisse mehrerer Einzel-
methoden gewichtet addiert.

Die erste der drei Einzelmethoden basiert auf der Fast Fourier
Transformation (FFT) und vergleicht die maschinenbekannten
Eigenfrequenzen mit der vorliegenden Messung. Dies erfolgt so-
wohl fiir die gemessene Beschleunigung als auch fiir die daraus
resultierenden Geschwindigkeits- und Verlagerungsergebnisse in
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der Hauptbearbeitungsebene (X- und Y-Richtung). Die zweite
Einzelmethode beschreibt das manuelle Labeln, bei dem Be-
schleunigungsmessungen und Verlagerungsdarstellungen mithilfe
von Expertenwissen ausgewertet werden. Die dritte Einzelmetho-
de umfasst zwei Grenzwertverfahren, darunter ein Verfahren, das
auf der Poincaré-Abbildung beruht [20].

4 Merkmalsextraktion

Die extrahierten Merkmale, die stabilititsrelevante Informatio-
nen enthalten und als Input fiir zwei von insgesamt vier unter-
suchten Klassifikationsverfahren dienen, beruhen auf der in die-
ser Arbeit vorgestellten Umdrehungsdurchschnittsdifferenz
(UDD).

Nach der Messung eines Batchs, das in Bild 2 (oben links)
durch die beiden roten vertikalen Linien im zeitlichen Verlauf der
Beschleunigung dargestellt wird, kann durch doppeltes Integrie-
ren und periodische Regression eine dreidimensionale Verlage-
rungsdarstellung, der nahe am Tool Center Point (TCP) befindli-
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Bild 2. Signalverarbeitung von Beschleunigungsmessung zur Verlagerung. Grafik: WZL
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Bild 3. Aus der Verlagerung abgeleitete UDD fiir vier Umdrehungen und jeweils drei Raumdimensionen. Grafik: WZL
chen Messposition, berechnet werden. Dies wird anhand eines odisch zur Spindeldrehzahl stehen, wie beispielsweise die Messer-
stabilen Batchs in Bild 2 visualisiert. eingriffsfrequenz, effektiv herausgefiltert.

Durch die Hinzunahme der Durchschnittsverlagerung, also der Im letzten Schritt wird jede UDD mithilfe einer FFT-Analyse
durchschnittlichen Verlagerung eines Stiitzpunkts {iber vier Spin- in ihre Frequenzkomponenten zerlegt (blauer Verlauf Bild 4).
delumdrehungen, ist es moglich, jede der vier Umdrehungstrajek- Anschlielend wird die energetisch dominierende Frequenz (edF)
torien davon zu subtrahieren. Dies geschieht fiir alle drei Raum- ermittelt. Diese ist in Bild 4 durch den roten Verlauf dargestellt

dimensionen, wodurch zwolf UDD-Verldufe pro Batch entstehen und zeigt das maximale Energielevel der jeweiligen UDD und
(Bild 3). So kann fiir jeden zeitlich bestimmten Abtastschritt ei- dessen FFT-Auswertung. Nach [21] wird die Energie eines Ein-

ne Differenz zwischen der tatsichlichen und der durchschnittli- massenschwingers durch folgende Gleichung beschrieben:
chen Umdrehung gebildet werden, die in der UDD-Darstellung in
Bild 2 zu sehen ist. Auf diese Weise werden Frequenzen, die peri- ~ E,, = 0,5 m > 4> (1)
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Bild 4. Aus der UDD abgeleitete edF fir vier Umdrehungen und jeweils drei Raumdimensionen. Grafik: WZL

Diese gilt fiir den Fall der maximalen Auslenkung der Masse, also
E,, =E, und E, =0. Die Masse ist dabei m, die Schwing-
frequenz @ und die dazugehorige Amplitude A. Daraus ldsst sich

das folgende Proportionalititsverhiltnis fir die edF ableiten:
edF < w? 4? (2)

Da jeweils w und A4 durch die FFT-Analyse bekannt sind, ldsst
sich die edF jeder UDD auf diese Weise ermitteln.

Der Hintergrund fiir die UDD-Methode leitet sich aus dem
(vermeintlich) chaotischen Verhalten instabiler Verlagerungstra-
jektorien [22] ab. Die Idee ist folgende: Ist ein Batch stabil, unter-
scheidet sich jede Umdrehungstrajektorie nur geringfiigig von der
Durchschnittstrajektorie. Ist ein Batch instabil, zeigen sich deutli-
che Unterschiede zur Durchschnittstrajektorie in der UDD. Bei
instabilen Zerspanzustinden tiiberlagern sich die Verlagerungs-
trajektorien mit der dominanten Ratterfrequenz. Dies geschieht
sowohl im hoch- als auch im niederfrequenten Bereich. Durch die
Subtraktion dieser Trajektorien von der Durchschnittstrajektorie
lasst sich die angeregte dominante Schwingung in der Nihe einer
Eigenfrequenz gezielt extrahieren.

Die Merkmale zur Stabilititsbewertung entstehen durch den
Vergleich der edF jeder UDD. Da weder Grenzwerte noch
systemimmanente Eigenfrequenzen einbezogen werden und
ausschliefflich der edF-Vergleich ausschlaggebend ist, bleibt die
UDD-Methode im Kern unabhingig von spezifischen Randbedin-
gungen.

5 Klassifikationsmethoden

Es werden vier Klassifikationsansitze miteinander verglichen:
die UDD-Klassifikation auf Basis des edF-Vektorvergleichs, meh-
rere ML-Modelle basierend auf UDD-extrahierten Merkmalen,
zwei Bildklassifikationen mittels neuronaler Netzwerke (NN)
anhand der zweidimensionalen Verlagerungsdarstellung [23} so-
wie eine Methode mit empirisch ermittelten Grenzwerten [20].
Diese werden im sogenannten Transferwissenstest gegeniiberge-
stellt (Bild 5). Dabei erfolgt das Training mit Messdaten von drei
Maschinen, wihrend das trainierte Modell auf die Messungen
einer unbekannten, nicht fiir das Training genutzten Maschine
angewendet wird. Der Transferwissenstest umfasst vier Gruppen
und wird fiir alle Performanceanalysen der Klassifikationsmetho-
den siebenmal wiederholt, um die statistische Varianz nichtdeter-
ministischer Klassifikationsmethoden zu beriicksichtigen.
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Zudem gibt ein weiterer Test, der Gesamttest, Aufschluss iiber
die statistische Varianz nichtdeterministischer Klassifikationsme-
thoden. Hierbei werden die gelabelten Messungen aller vier Ma-
schinen im Verhiltnis 80/20 zufillig in Trainings- und Testdaten
unterteilt. Fiir jede der KI-Klassifikationen wird eine Hyperpara-
meteroptimierung im Rahmen einer Sensitivititsanalyse durchge-
fithrt. Die Ergebnisse der jeweils besten Hyperparameterkombina-
tionen fiir die einzelnen Klassifikationsmethoden werden nachfol-
gend dargestellt.

5.1 UDD-Klassifikation per edF-Vektorvergleich

In der UDD-Klassifikation per edF-Vektorvergleich wird die
edF pro Umdrehung und pro Bearbeitungsachse in der Haupt-
bearbeitungsebene (X-Y-Ebene) direkt miteinander verglichen:

[edF .y, edF,, edF 3, edF 4] = [edFyl, edF,, edF ;, edFy4] (3)

Nur wenn beide Vektoren exakt gleich sind, handelt es sich um
einen instabilen Batch.

Der Transferwissenstest der UDD-Klassifikation per edF-Vek-
torvergleich weist eine Varianz von 18,2 Prozentpunkten auf.
Dies ldsst sich auf die vier verschiedenen Transferwissenstest-
gruppen zuriickfithren (siehe Bild 6). Fiir den Validierungsdaten-
satz der Maschine A werden beispielsweise 77,5 % und fiir
Maschine C 95,7 % Klassifikationsgenauigkeit erreicht. Der
gewichtete Mittelwert liegt bei 92 % und hingt von der Anzahl
der Datenpunkte pro Validierungsdatensatz ab. Je hoher die
Anzahl der Datenpunkte pro Validierungsdatensatz, desto mehr
Gewicht hat die dazugehorige Klassifikationsgenauigkeit.

Alternativ kann der edF-Vektorvergleich tiber drei (X-Y-Z)
statt zwei (X-Y) Achsen erfolgen, wodurch sich die Gesamtge-
nauigkeit von 92 % auf 91 % reduziert. Da die Steifigkeit in
Z-Richtung in der Regel hoher ist, treten in dieser Achse iiber
mehrere Umdrehungen tendenziell geringere dominante Ratter-
schwingungen, welche der Z-Bewegung iiberlagert sind, auf.

Die UDD-Klassifikation per edF-Vektorvergleich erreicht aus
mehreren Griinden keine perfekte Klassifikationsgenauigkeit.
Durch die periodische Regression wird bei der TCP-Verlagerung
mit tiberlagerter Ratterschwingungen nicht die tatsichliche, son-
dern eine approximierte Verlagerungstrajektorie berechnet. Verla-
gerungen mit iiberlagerten niederfrequenten Ratterschwingungen
weisen hiufig groflere Verlagerungsamplituden auf als solche mit
hochfrequente Ratterschwingungen. Deswegen entsteht durch die
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Bild 5. Transferwissenstest. Grafik: WZL

verwendete periodische Regression immer ein Fehler, abhingig
von der Grofle der Amplitude der iiberlagerten Ratterschwin-
gung. Dies duflert sich darin, dass vor allem niederfrequente Rat-
terfrequenzen etwas schlechter mittels UDD-Methode klassifi-
ziert werden als hochfrequente (siehe Maschine A mit 77,5 %
Klassifikationsgenauigkeit und {iberwiegend niederfrequenten
Ratterschwingungen). Ein weiterer Grund fiir die reduzierte
Genauigkeit liegt in der begrenzten Prizision der Labeldaten.
Fehlerhafte Label koénnen sowohl False Positives als auch False
Negatives verursachen, wenn Datenpunkte inkorrekt zugewiesen
werden. Zudem wird in 1,9 % der Fille die drehzahlbedingte
Grenze der UDD erreicht (siehe 5.5 Grenzen UDD-basierter
Klassifikationsmethoden). Dariiber hinaus hat die Anzahl der
Umdrehungen pro Batch eine Auswirkung auf die Genauigkeit.
Mehr Umdrehungen verbessern die Durchschnittstrajektorie und

WT WERKSTATTSTECHNIK BD. 115 (2025) NR. 07-08

erhohen die Genauigkeit der UDD. Allerdings fithren mehr Um-
drehungen pro Batch auch zu einer geringeren Klassifikations-
frequenz, weshalb hier eine anwendungsspezifische Abwigung
erforderlich ist. Abschlieflend ist es denkbar, dass verschiedene
Instabilititsursachen Einfluss auf die Klassifikationsgenauigkeit
haben konnen. Beispielsweise konnen Lagekopplungen, eine
fallende Schnittkraft-Schnittgeschwindigkeits-Charakteristik so-
wie die Bildung von Aufbauschneiden [24] einen zum regenerati-
ven Rattern unterschiedlichen Einfluss auf die Klassifikationsge-
nauigkeit haben.

Wegen des deterministischen Verhaltens dieser Methode ist
kein Training erforderlich. Auflerdem wird eine echtzeitfihige
Anwendung gewihrleistet, da eine bindre Klassifikationsaussage
durchschnittlich 22-mal schneller generiert werden kann als die
Messdauer eines Batchs.
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Bild 6. UDD-Klassifikation per edF-Vektorvergleich. Grafik: WZL
5.2 ML-Klassifikation mittels UDD-Merkmale

Die Merkmale, die als Input fiir die angewendeten ML-Klassi-
fikationsmethoden dienen, basieren ebenfalls auf der UDD. Es
wird die edF der jeweiligen UDD auf drei unterschiedliche
Weisen in der Hauptbearbeitungsebene paarweise verglichen. Der
erste Vergleich liefert eine Aussage beziiglich der edF-Gleichheit
pro Paarvergleich. Im zweiten Vergleich wird iiberpriift, ob ein
grofiter gemeinsamer Nenner vorliegt. Im dritten Vergleich wird
das edF-Verhiltnis paarweise bestimmt. Daraus ergeben sich
insgesamt 21 Gleitkommazahlen zwischen 0 und 1, die als Input
fiir die ML-Algorithmen dienen.

In Bild 7 werden sieben verschiedene ML-Klassifikationen
miteinander verglichen: AdaBoost (AB), Support Vector Machine
non-linear (SVMnl), CatBoost (CB), Logistic Regression (LR),
Random Forest (RF), Support Vector Machine linear (SVMI)
und k-Nearest Neighbor (kNN). Zur biniren Klassifikation wur-
den bewusst verschiedene Modelle ausgewihlt, um sowohl lineare
als auch nicht-lineare Zusammenhinge abbilden zu kénnen. Die
Auswahl umfasst etablierte Verfahren wie SVM (linear und nicht-
linear), RF und AB, leistungsstarke Boosting-Modelle wie CB so-
wie einfachere Basismodelle wie kNN und LR zum Vergleich. Die
Methode, die im Transferwissen am besten abschneidet, ist das
AB-Verfahren, mit einer gewichteten Durchschnittsgenauigkeit
von 91,5 % (siehe Bild 7 oben). Die Varianz ist auch hier auf die
Transferwissenstestgruppen zuriickzufiihren (siehe Bild 5). Im
Gegensatz zur UDD-Klassifikation per edF-Vektorvergleich gibt
es jedoch eine Abhingigkeit von den Trainingsdaten, wodurch
diese und jegliche andere Form von KI-Klassifikation unumging-
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lich zu einer trainingsdatenabhingigen beziehungsweise grenz-
wertanhidngigen Methode wird. Das liegt daran, dass ein ML-
Algorithmus nur die Instabilititszusammenhinge erlernen kann,
die in den Trainingsdaten enthalten sind. Die Optimierung der
Hyperebene hingt somit von den Merkmalen und den Trainings-
daten ab. Der wesentliche Vorteil gegeniiber der UDD-Klassifika-
tion per edF-Vektorvergleich ist somit die Moglichkeit, mehrere
Instabilititsursachen  durch unterschiedliche Merkmale zu
betrachten. Dies begriindet die Existenzberechtigung trainings-
datenabhingiger Klassifikationsmethoden und ermdéglicht es, die
UDD-Klassifikation per edF-Vektorvergleich dort zu erginzen,
wo diese schlecht abschneidet. Auch der Rechenaufwand ist ge-
ring, was eine Echtzeitanwendung ermoglicht. Das Zeitverhiltnis
von Batchmessung zu Klassifikation betrigt im Durchschnitt 21.

Die statistische Varianz lasst sich durch die Ergebnisse des Ge-
samttests (Bild 7 unten) beschreiben. Hier variiert die Klassifika-
tionsgenauigkeiten um maximal 1,8 Prozentpunkte. Dies ist auf
die zufillige Aufteilung der Trainings- und Testdaten sowie die
daraus resultierende Stabilititszusammensetzung zuriickzufiithren.
Die geringe Varianz dieser nichtdeterministischen Methoden ver-
deutlicht, dass UDD-Merkmale gut geeignet sind, Ratterschwin-
gungen zu erkennen.

5.3 Bildklassifikation mittels NN und X-Y-Verlagerung
Der Input der Bildklassifikation mittels NN basiert auf der

Verlagerung in der Hauptbearbeitungsebene
(X-Y-Ebene). Es handelt sich um ein zweidimensionales

errechneten
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Bild 7. ML:-Klassifikation auf Basis von UDD-Merkmalen. Grafik: WZL
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Bild 8. NN-Klassifikation auf Basis von 64x64 Pixel groRen Verlagerungsbildern.

64x64-Pixel-Bild der Verlagerung, welches von einem NN auf
Stabilitdt bewertet wird.

In Bild 8 werden zwei Klassifikationsmethoden miteinander
verglichen: VGG16 mit vier Faltungsschichten [25] und ein
gewohnliches Convolutional Neural Network (CNN) mit drei
Faltungsschichten, als Referenzarchitektur mit geringer Komple-
xitdt. Mit VGG16 wird ein gewichteter Klassifikationsdurch-
schnitt von 75,4 % erreicht. Die geringere Klassifikationsgenauig-
keit ist nicht nur auf die Transferwissenstestgruppen, sondern
auch auf die insgesamt schlechtere Erlernung von Stabilitits-
zustdnden im Vergleich zur ML-Klassifikation auf UDD-Basis zu-
riickzufiithren. Dies konnte sich durch zu aussageschwache Klassi-
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fikationsinputs begriinden. Durch weitere Verfeinerung und
Erweiterung der Inputdaten konnte sich die Klassifikationsgenau-
igkeit durch NN in diesem Fall erhéhen.

Wie bei allen KI-Algorithmen hingt auch hier die Klassifikati-
on stark von den Trainingsdaten ab und ist somit trainingsdaten-
abhingig. Ein weiterer Aspekt ist der leicht erhghte Rechenauf-
wand. Dennoch bietet das Verfahren mit einem durchschnittli-
chen Batchzeit-zu-Klassifikationszeit-Verhiltnis von 11 eine echt-
zeitfahige Anwendung. Ein Vorteil gegeniiber der UDD-Klassifi-
kation per edF-Vektorvergleich ist auch hier die Moglichkeit,
mehrere Instabilitdtsursachen zu beriicksichtigen, da das NN statt
vordefinierter Merkmale als Input, wie beispielsweise aus der
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UDD-Merkmalsextraktion, relevante Instabilititsmerkmale selbst-
standig aus den Bilddaten extrahiert.

Die Ergebnisse des Gesamttests in Bild 8 (unten) zeigen, dass
die Zusammensetzung der Stabilititsursachen in den Trainings-
daten fiir das NN entscheidend ist. Das VGG16-Modell scheint
zwar besser im Erlernen von Instabilititszustinden im Vergleich
zum CNN zu sein, jedoch weist es eine groflere Varianz im
Vergleich zur ML-Klassifikation (Bild 7 unten) des Gesamttests
auf. Dies deutet darauf hin, dass stabilititsrelevante Informatio-
nen aus UDD-basierten Merkmalen leichter extrahiert werden
konnen als aus einer reinen Bildklassifikation der Verlagerungs-
darstellung. Da die Merkmale zur Instabilititserkennung vom NN
selbststindig identifiziert werden, eignet sich diese Methode nicht
fir die Kombination mit der maschinenunabhingigen UDD-
Klassifikation per edF-Vektorvergleich. Bei der ML-Klassifikation
hingegen miissen Merkmale manuell definiert werden, sodass ge-
zielt solche Merkmale ausgewihlt werden konnen, die die UDD-
Klassifikation per edF-Vektorvergleich erginzen - ein Ansatz, der
bei der NN-Bildklassifikation auf diese Weise nicht moglich ist.

5.4 Poincaré-Grenzwertklassifikation

Die hier verwendete Grenzwertmethode basiert auf der empi-
rischen Ermittlung von maschinenindividuellen Grenzwerten. Bei
der Uberschreitung der ermittelten Grenzwerte klassifiziert diese
deterministische Methode den Zustand als instabil. Sie basiert auf
dem Poincaré-Ansatz [20]. Es wird eine gewichtete Durch-
schnittsgenauigkeit von 76,5 % erreicht (Bild 9). Diese Methode
ist system- und prozessabhingig, erfordert jedoch kein Training
und bendtigt nur einen geringen Rechenaufwand.

Auch diese Methode kann ergidnzend zur UDD-Klassifikation
per edF-Vektorvergleich verwendet werden, da sie fiir Maschine
A mit 88 % eine hohere Klassifikationsgenauigkeit im Vergleich
zur UDD-Klassifikation fiir dieselbe Maschine (77,5 %) aufweist
und somit ergidnzend wirken kann. Ein Nachteil ist jedoch die
initiale Festlegung der Grenzwerte, was die industrielle Anwen-
dung erschwert. Dies konnte durch eine Transformation zur auto-
matisierten Ermittlung der Grenzwerte verbessert werden. Wenn
Daten iiber den Lebenszyklus einer Maschine aufgenommen wer-
den, ermoglicht dies das automatisierte Labeln und kontinuierli-
che Trainieren grenzwertbasierter Rattererkennungsmethoden,
indem die Grenzwerte numerisch optimiert werden, beispielswei-
se durch ML-Verfahren wie kNN oder SVM.
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5.5 Gesamtvergleich

Die jeweils besten Methoden der ML- und NN-Klassifikation
lassen sich neben der UDD-Klassifikation per edF-Vektorver-
gleich in Bild 10 anhand des Transferwissenstests zusammenfas-
sen. Hier schneiden die beiden UDD-basierten Methoden mit bis
zu 92 % gewichteter Durchschnittsgenauigkeit besser ab als die
NN-Bildklassifikation. Diese Ergebnisse basieren auf der Verwen-
dung der Messungen aller vier Maschinen. Auch im Vergleich mit
der Grenzwertmethode lasst sich ein klares Fazit ziehen: UDD-
basierte Methoden schneiden im Transferwissen besser ab als die
Poincaré-Methode und die Bildklassifikation. Da Grenzwerte fiir
die Poincaré-Methode nur fiir zwei der vier Maschinen bekannt
sind, werden in diesem Vergleich fiir die anderen drei Methoden
ebenfalls nur die Messungen dieser beiden Maschinen verwendet.

6 Grenzen UDD-basierter
Klassifikationsmethoden

Sobald die Periodendauer einer angeregten Ratterfrequenz
grofer als die Dauer fiir eine Spindelumdrehung ist, kann diese
mittels FFT nicht mehr extrahiert werden. So ergibt sich eine
drehzahlbedingte Grenze. Es ist beispielsweise nicht moglich, Rat-
50 Hz fiir eine
3000 1/min oder Ratterfrequenzen kleiner als 200 Hz fiir eine
Drehzahl von 12000 1/min zu ermitteln. Diese linear verlaufen-
de Grenze wird hinsichtlich aller klassifizierten Batches in 1,9 %

terfrequenzen kleiner als Drehzahl von

der Fille tiberschritten. Neben dieser Untergrenze existiert auch
eine Obergrenze der UDD, die durch das Shannon-Theorem [26}
bestimmt wird und von der Abtastrate der verwendeten Sensoren
abhingt. Ein Sensor mit Abtastrate von 5120 Hz kann maximal
Ratterfrequenzen bis 2560 Hz erfassen. Diese Grenze wird in
den Messdaten nicht iiberschritten.

7 Zusammenfassung

Diese Arbeit zeigt die Umsetzbarkeit unterschiedlicher Klassi-
fikationsalgorithmen zur onlinefihigen, system- und prozessiiber-
tragbaren Instabilititserkennung in Frisprozessen. Dabei werden
zwei neue Klassifikationsmethoden entwickelt, die durchschnittli-
che Kilassifikationsgenauigkeiten von 91,7 % beziehungsweise
92 % erreichen. Transferwissenstests belegen, dass Instabilititszu-
sammenhinge tatsdchlich erlernt werden, anstatt Klassifikations-
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Bild 10. Gesamtvergleich der besten Klassifikationsmethoden. Grafik: WZL

aussagen
Grenzwerten zu treffen.

Die entwickelte UDD-Klassifikation per edF-Vektorvergleich
beweist, dass eine maschinenunabhingige Klassifikation mdéglich
ist und die Natur des Ratterns durch die UDD mit hoher Erfolgs-
quote extrahiert wird. Alle hier vorgestellten Klassifikationsme-

anhand maschinenspezifischer Eigenschaften und

thoden basieren auf einer einfachen Messkette, die Beschleuni-

gungszustinde und die Winkelposition der Spindel aus dem Fris-

prozess verarbeitet. Dadurch wird eine praxisnahe Implementie-
rung in der Industrie sichergestellt.
Zu den wesentlichen Errungenschaften zihlen:

1. Die Erkenntnis, dass die Betrachtung mehrerer Maschinen-
Werkzeug-Kombinationen fiir eine system- und prozessiiber-
tragbare Rattererkennung notwendig ist.

2. Das Labeln von circa 5,6 Millionen Datenpunkten, die
als Grundlage fiir eine umfassende Ratterdatenbank dient.

3. Die Entwicklung einer maschinenunabhingigen Merkmals-

extraktion (UDD), die eine robuste Klassifikation ermdoglicht.

. Die Entwicklung von zwei neuen UDD-basierten Klassifikati-

onsmethoden, die Genauigkeiten von bis zu 96,4 % erreichen.

5. Die potenziell erginzende Wirkung der UDD-Klassifikation
per Vektorvergleich gegentiber grenzwert- beziehungsweise
trainingsdatenabhingigen Methoden wie der ML-Klassifikation
auf UDD-Basis.

Dariiber hinaus wird gezeigt, dass die UDD-basierten Methoden

sowohl nieder- als auch hochfrequentes Rattern zuverlissig er-

kennen.
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Die UDD kann zudem als Querschnittstechnologie fiir ver-
schiedene Anwendungen genutzt werden. Sie identifiziert domi-
nante Schwingungen in der Nihe systemindividueller Eigen-
frequenzen und eignet sich damit fiir Systeme mit rotierenden
Maschinenelementen und dynamischer Krafteinwirkung. Neben
Frisprozessen konnten auch Verfahren wie Bohren und Drehen
sowie Maschinen wie Turbinen potenzielle Anwendungsfelder
darstellen.

Gerade im Kontext der E-Mobilitit, in dem hohe Anforderun-
gen an Priazision, Leichtbau und Bauteilkomplexitit gestellt
werden, erdffnet die vorgestellte onlinefihige Rattererkennung
neue Moglichkeiten zur Optimierung zerspanender Fertigungs-
prozesse — etwa durch eine a-priori-Auslegung optimierter Pro-
zessparameter oder eine regelungsbasierte Prozessanpassung. Die
zuverlissige Erkennung instabiler Zustinde in Echtzeit schafft
damit die Grundlage fiir eine konstant hohe Bearbeitungsqualitit
und kann zur Reduktion von Ausschuss und Maschinenstillstin-
den beitragen. Dartiber hinaus lassen sich Maschinen- und Werk-
zeugschiden verringern sowie Zeitspanvolumina erhdhen. Diese
Eigenschaften stellen entscheidende Vorteile fiir die wirtschaftli-
che und skalierbare Produktion von Komponenten fiir elektrische
Antriebssysteme dar.
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