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In this paper, we’d like to draw the attention of
marketing academics and marketing practi-
tioners to the use of alternative-specific de-
signs (ASD) for choice-based conjoint (CBC)
studies in marketing research. As opposed to
transportation research, where the ASD ap-
proach for discrete choice experiments (DCE)
or discrete choice modeling in general origi-
nated from and is still widely used, this design
method rather tends to lead a shadowy exis-
tence in marketing research despite its obvi-
ous superiority for generating more realistic
choice situations for respondents compared
to the application of the generic designs. The
latter are commonly employed in conjoint ex-
periments in a marketing context, for example
for product design and related market simula-
tions and optimizations. We discuss why and
when it is recommendable to use an ASD,
propose a typology for characterizing different
types of ASD structures, and work out the
particularities of interpreting the estimation re-
sults of an ASD-CBC model and calculating
related willingness-to-pay quantities. For illus-
tration, we use an empirical example based
on an ASD-CBC study on consumer prefer-
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ences for electric vehicles in the UK. We fur-
ther point to advanced modeling options for
enriching or extending ASD-CBC models, in-
cluding alternative-specific hybrid choice
models and nonlinear utility specifications. Fi-
nally, we discuss the state-of-the-art how arti-
ficial intelligence (Al) is already influencing
the domain of conjoint analysis and DCE.

1. Introduction

Nowadays, the most widely used approach to collect and
quantify consumer preferences is the discrete choice ex-
periment (DCE) or choice-based conjoint (CBC). CBC
as a term is typically attributed to consumer research in
marketing, whereas the term DCE originated from trans-
portation research and is still widely applied there as well
as in other fields such as urban planning, environmental
economics, or health economics. However, it is worth
mentioning that although it is common in many research
areas, including marketing, to refer to the estimation of
choice models based on stated choice data as choice-
based conjoint analysis, this can be misleading. This con-
cerns primarily the term ‘“conjoint analysis” in its tradi-
tional understanding. Here, ranking or rating data from
respondents is collected and a statistical model is fitted
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in a first step, before choice probabilities are calculated
in a second independent step based on the previously es-
timated part-worth preferences/utilities (for more details,
see Louviere et al., 2010, p. 69). Balderjahn et al. (2021)
also recently clarified the terminology by emphasizing
that, “strictly speaking, CBC is a discrete choice analysis
(DCA) applied to a conjoint design” (Balderjahn et al.
2021, p. 186; cited according to Cohen 1997). Louviere
and Woodworth (1983) connected the concept of con-
joint analysis with discrete choice theory by estimating
parameters of conjoint-type functions from discrete
choice data, which Green et al. (2001) later referred to as
choice-based conjoint analysis (CBC). In this ground-
breaking work by Louviere and Woodworth (1983), the
application of random utility theory to aggregate con-
sumer choice (and allocation) data was demonstrated for
a variety of empirical examples, among them a study for
vacation destination choice with destination-specific air
travel costs. The paper demonstrated the power of the
proposed new approach in managing strategic pricing
and product design problems, making CBC subsequently
one of the most popular marketing tools for the measure-
ment of consumer preferences.

Typically, choice designs used for CBC studies in the ac-
ademic marketing community and also in marketing re-
search practice (see Kurz 2024) are constructed in a way
that relevant attributes are common to all alternatives,
which is also referred to as a generic design. From a
practical perspective, this is oftentimes not realistic, as
Louviere and Woodworth (1983) have already suggested
in their example with alternative-specific air travel costs
depending on the different destination alternatives.
Therefore, more flexible but also more complex choice
designs, where not all attributes apply to all alternatives,
but instead are specific to each alternative (transportation
mode, brand, or technology) seem justified. This was on-
ly recently highlighted in an interview with Bryan Orme

(2022), where Jordan Louviere noted, “... the over-
whelming majority of papers that I see ... use generic de-
signs when they should be using alternative-specific de-
signs”. One may explicitly prohibit particular attributes
or attribute levels from appearing with others when using
generic designs, however, in most cases, this can lead to
serious problems with the design efficiency (Chrzan and
Orme 2000). The solution to this issue can be the appli-
cation of an alternative-specific design (ASD) where in-
teractions are implicitly taken into account.

In the ASD, the attributes have their own terminology. The
primary attribute, also known as alternative-specific con-
stant (ASC), is an attribute whose levels appear in every
alternative and upon which conditional attributes depend.
Conditional attributes (alternative-specific attributes) are
attributes that are only displayed with a certain level or
several levels of the primary attribute. Additionally, attri-
butes that will be shown with all levels of the primary attri-
butes across the alternatives, called common attributes,
can be specified as well (Sawtooth Software 2008, p. 7).
However, the ASCs are not always primary attributes.
Some studies include only fixed ASCs with no conditional
attributes attached to them (e.g. brand constants, which as
a very special case of an ASD are also widespread in mar-
keting applications). The most famous example of an ASD
stems from transportation research on the commute mode,
where walking or riding a bicycle are alternatives on their
own with no further modifying attributes (e.g., Anderson
etal. 1992, Swait and Ben-Akiva 1987).

The different alternatives (levels of the primary attribute)
however can also belong to the same product category,
such as electric vehicle brands offered by different car
manufacturers but at very different price levels; which
makes it reasonable to specify vehicle-specific price at-
tributes instead of only one generic price attribute with
all levels common to all alternatives. Fig. I below illus-

Al If you would have to choose between the following five electric SUVs, which one that would be?

Select one car of your preference by clicking on one of the "select” buttons below:

Primary Attribute Model | Audie-Tron 35 Hyundailoniq 5
(ASC) SE Connect
Common Attribute | Range | 300 miles 200 miles
Common Attribute { Power  280hp 190 hp
Conditional { Price £47.300 £43.100
Attribute
(separate price range
for each level of the

Select Select

primary attribute)

Mercedes EQA SkodaEnyaq VW ID.4 Pro
250 V80 Performance
350 miles 250 miles 350 miles
220 hp 160 hp 190 hp
£50.600 £39.400 £41.600
Select Select

NONE: I wouldn't buy any of these electric SUVs

Select

Fig. 1: ASD choice task example. Self-conducted study on preferences for electric SUVs in the UK.
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trates this situation. Including a brand name or more pre-
cisely the car manufacturer and model here (denoted by
the primary attribute “model) allows estimating its value
via the alternative-specific constant and further creates a
primary attribute-conditional attribute interaction, which
is incorporated into the model (Rao, 2014, p. 133). By
creating brand-specific price attributes (the conditional
attributes), a researcher can accommodate that the im-
pact of the price depends on the brand it is assigned to.
Therefore, a price effect can be estimated separately for
each brand, i.e. brand-specifically (Zwerina et al., 1996,
p- 274). In contrast, driving range and horsepower for the
different electric vehicles represent common attributes
since each brand can take on all levels of these two attri-
butes. We elaborate on this example in more detail later
in section 4.

Further examples of this and different types of ASDs will
be shown in the following section, where we develop a
corresponding ASD typology. Sometimes, alternative-
specific designs are also referred to as labeled choice ex-
periments (Rose and Bliemer 2009).

As outlined above, alternative-specific designs have
been well-established in transportation research and oth-
er disciplines such as urban planning, environmental
economics, or health economics, yet they have been only
rarely used or explicitly mentioned in marketing research
despite their obvious conceptual advantage for consumer
studies. One of the rare exceptions in the (German) mar-
keting literature is the work of Balderjahn et al. (2021),
who illustrated this approach in an empirical CBC study
for chocolate bars and provided the basics of interpreting
the estimation results for alternative-specific effects. We
elaborate on their work and extend it by providing a ty-
pology for building alternative-specific designs for CBC
studies and details on the construction of alternative-spe-
cific choice designs, by further deepening the interpreta-
tion of estimation results, and in particular by focusing
on the calculation of related willingness-to-pay quanti-
ties which is more tricky compared to designs with a ge-
neric price attribute.

The construction of designs for alternative-specific
choice experiments is more challenging from a theoreti-
cal point of view, however, it promises to provide re-
spondents with much more realistic choice situations
when this is justified, without imposing harmful prohibi-
tions for the design efficiency. For example, product con-
cepts of electric vehicle manufacturers with a higher
(lower) brand value will not be shown with an unrealisti-
cally low (high) price level, if vehicle-specific prices are
used. The ASD is, therefore, a design method, where a
researcher can specify which characteristics (attributes
and levels) are allowed to appear with which alternative
offered to respondents for evaluation in a choice set,
without endangering the statistical design efficiency. In-
stead, the consideration of alternative-specific effects
permits a much wider range of choice situations com-
pared to the typically used generic main-effects designs
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where all profiles share the same attributes and levels
(Chrzan and Orme 2000, p. 8).

From our perspective, more attention to the practical im-
plications of alternative-specific choice designs for CBC
studies is required in the marketing literature and can be
helpful to facilitate a wider use of this design technique in
marketing research in general. Hence, with the present pa-
per, we aim to provide readers with a better understanding
of the application of the ASD framework in choice-based
conjoint studies and to show the particularities of this ap-
proach for interpreting the estimation results and when
willingness-to-pay calculations as related quantities are of
particular interest. For an illustration in a marketing re-
search context, we use an empirical example based on a
self-conducted CBC study on consumer preferences for
electric vehicles. We describe the methodology in section
2 and propose a typology for characterizing different types
of ASDs in section 3. Section 4 contains the empirical case
study for demonstration. In section 5, we point to various
newer approaches for extending ASD-CBC models (hy-
brid choice models, nonlinear utility specifications), which
can be seen as advanced options to further improve CBC
studies. Here, we also discuss the state-of-the-art how arti-
ficial intelligence (Al) is already influencing the domain of
conjoint analysis and DCE. Section 6 concludes the paper
with a summary and a discussion of limitations.

2. Methodology

McFadden (1974) applied logit analysis in choice-based
modeling (also called discrete choice) to forecast com-
muters’ travel demand for the San Francisco Bay Area
Rapid Transit (BART). Four existing transportation
modes plus two new BART modes were used in the
study. Each transportation mode (alternative) was de-
scribed by its own set of characteristics (attributes). Con-
sequently, each alternative was represented by an alter-
native-specific constant (ASC) and the characteristics of
these constants could be described as modifying (condi-
tional) attributes. Part-worth utilities were estimated for
the ASCs and the parameters for the modifying attributes
were estimated with respect to the ASC. The ASC for
each alternative incorporates similarly to a regression
model the average effect on the utility of all factors not
included in the model, which means that the unobserved
portion of the utility of respondent i for alternative j has
zero mean (Train 2009, p. 25).

Based on random utility theory (McFadden 1974), the
deterministic component of the utility function for an al-
ternative (product concept) that includes both alterna-
tive-specific and generic (common) attributes can be
stated as follows:

V= e, ﬂ(i)jh C Xyt ZheHx B - Xijs ()

where i denotes the respondent, j denotes the alternative,
h denotes the attribute, S, is the utility parameter for
attribute £ (of alternative j) and x;, is the value of at-
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tribute / in alternative j. H, is the set of attributes specif-
ic to alternative j, and H, is the set of generic (common)
attributes. The respondent index on the right-hand side of
equation (1) is set in parentheses to indicate that utility
parameters in early applications of discrete choice mod-
els were often estimated at the aggregate consumer level
only.

Based on random utility theory and the assumption of in-
dependent and identical Gumbel distributed error terms
for the random component, the choice probability of re-
spondent i for alternative j can be represented by the
multinomial logit (MNL) model (McFadden 1974):

_ eXP(EheH,, :B(i)jh S X+ EheHg IB(i)h 'xjh)
v ZkgC, eXp(ZheHu ﬂ(i)kh : xkh + ZheHﬁ ﬂ(i)h . th)’

where C, is the choice set of respondent i.

2

The log-likelihood as a function of the parameters is giv-
en by

LU =Zb Th v, - InP, )

where S is a vector containing the parameters of the
model, Vi is a binary variable that takes on the value of 1
if respondent i has chosen alternative j from choice set
C,, and 0 otherwise.

The development of Hierarchical Bayesian (HB) estima-
tion techniques made it further possible to estimate indi-
vidual-level parameters from choice data, including the
ASD-CBC coding (Allenby, Arora, and Ginter 1995; Al-
lenby and Ginter 1995; Lenk et al. 1996). The HB-MNL
model with the multivariate normal distribution as a
probability distribution, also called the HB mixed logit
model (see Train 2009, Ch. 12), became the standard es-
timation approach for the representation of random taste
variation on the individual respondent level, also due to
the availability of commercial software for computation
(e.g., Sawtooth Software 2022). Although Sawtooth
Software is widespread in market research practice for
conducting choice-based conjoint analyses, with re-
nowned market research institutes using its ASD mod-
ule, ASD-CBC studies are rarely found in the academic
marketing literature (Orme 2022) as well as applied by
only a minority of users of the software (Kurz 2024,
p. 364).

3. Typology for Alternative-Specific Designs
Based on Empirical Evidence

ASDs can be classified into the following types:

3.1. Alternative-specific constants (ASC) for fixed
alternatives (such as transportation mode or
brand)

Louviere and Woodworth (1983) in their soft-drink
choice study example analyzed choices among eleven
major brands of soft drinks (Coca-Cola, Pepsi, RC,

Sprite, 7-Up, Fresca, Mountain Dew, Hires, Dr. Pepper,
Mr. Pibb, and Orange Crush), where each soft drink was
treated as an ASC. No additional, characterizing attribu-
tes were included in the study. This is the simplest form
of an ASD.

3.2. Alternative-specific designs with an equal
number of attributes for all alternatives.

(a) One price attribute for each ASC with an equal
number of price levels and the same price points.

In Balderjahn et al. (2021), an empirical CBC study on
the choice between chocolate bars included three alterna-
tives represented by chocolate brands with five price lev-
els each. Price levels (points) were the same for each
chocolate brand. However, prices (conditional attributes)
were each modeled as chocolate-specific variables
(brand as a primary attribute), since the price had a dif-
ferent effect for each brand despite the same price points
(see Tab. I below).

In a study on choices between jeans reported by Louviere
et al. (2000), prices were also brand-specific and had the
same four price levels (points). The effect of price simi-
larly differed between jeans brands.

(b) One price attribute for each ASC with an equal
number of price levels but different price points.

In a choice experiment on alternative fuel vehicle (AFV)
preferences for private car owners in the Netherlands,
Hoen and Koetse (2014) created price attributes (condi-
tional attributes) specific to each type of the AFV (car
type as a primary attribute: hybrid, plug-in hybrid, fuel
cell, electric, and flexi-fuel) by adding a technology-spe-
cific mark-up to the price of the current technology. This
led to five alternative-specific attributes with three levels
each (see Tab. 2).

Brand Price levels

Milka 0.59€,0.79€,0.99€,1.19€,1.39€
Alpia 0.59€,0.79€,0.99€,1.19€,1.39€
Sarotti 0.59€,0.79€,0.99€,1.19€,1.39€

Tab. 1: An example of an equal number of price levels with the same
price points in the ASD-CBC study adapted from Balderjahn et al.
(2021), p. 194.

Car Type The mark-up for price levels

Hybrid 0 €, 2,000 €, 6,000 €

Plug-in hybrid | 0 €, 2,000 €, 7,000 €

Fuel-cell 1,000 €, 3,000 €, 10,000 €

Electric 1,000 € x (driving range/140), 3,000 € x
(driving range/140), 10,000 € x (driving
range/140)

Flexi-fuel 500 €, 1,200 €, 3,000 €

Tab. 2: Example for an equal number of price levels but different
price points for the conditional attributes in the ASD-CBC study
adapted from Hoen and Koetse (2014), p. 201.
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(c) One price attribute for each ASC with a different
number of levels and different price points.

An equal number of price levels is not always justified in
empirical ASD-CBC studies. As an example, we shall
consider a CBC study for vehicles of different brands. Car
manufacturers often hire market research institutes to car-
ry out conjoint studies for pricing or designing new car
models. However, the results of such studies are usually
for internal use only and are treated as top secret. Yet,
based on own experience in the automotive industry, there
are situations, where some car alternatives do not only re-
quire different price points, but also a different number of
price levels. Even though the car models as a rule consid-
ered belonging to the same car segment, each brand may
have its own price range. Depending on the starting “stick-
er” price, the number of trim levels (different versions of
the same car model), and the number of selectable addi-
tional features, this range might be wider or narrower for a
particular car model. To demonstrate this, we take two
electric SUV models, the BMW iX3 and Volkswagen
ID.4, which belong to the same car class. The BMW iX3 is
a more expensive model than the Volkswagen ID.4. Its
price starts at £ 60,970 in the UK (BMW 2022) and this
model has only two trim levels, whereas, Volkswagen ID.4
has four trims in the UK and its price starts at £ 36,560
(Volkswagen 2022). However, to allow price-elasticity
calculations for potential price changes and to achieve
more variation, additional price levels with a few steps be-
low and/or higher than the current market price are usually
added. Furthermore, it is advisable to have price levels
with equally large price intervals within the price attribute
or brand. Additionally, to avoid possible psychological ef-
fects from 0 and 9-ending prices (Baumgartner and Steiner
2007; Levy et al. 2020), it is reasonable to exclude such
price endings. Hence, possible price attributes for this ex-
ample could look as follows (see Tab. 3).

Alternative Price levels

BMW iX3 £57,970, £ 60,970, £ 63,970, £ 66,970

Volkswagen ID.4 | £ 33,560, £ 36,560, £ 39,560, £ 42,560,
£ 45,560, £ 48,560, £ 51,560, £ 54,560

Tab. 3: A theoretical but realistic example of one price attribute
(conditional attribute) for each ASC (primary attribute) with a
different number of levels and different price points.

Vehicle Driving Range
Plug-in-hybrid 16 km, 32 km, 64 km
Electric 120 km, 160 km, 200 km, 240 km

Tab. 4: Example of a vehicle-specific driving range attribute with
different numbers of levels and different driving range points
adapted from Axsen et al. (2015), p.194.

Some studies applied a different number of levels with
differing points for attributes other than price. Axsen et
al. (2015) in their study on preference and lifestyle het-
erogeneity among potential electric vehicle buyers had
different numbers of driving range levels with different
points for plug-in-hybrid and electric vehicle alternatives
(see Tab. 4).

In principle, cases (b) and (c) could also be addressed
with “prohibitions” when using a generic design, thereby
restricting certain levels of one attribute from appearing
in combination with specific levels of other attributes.
However, this makes it challenging to achieve two-way
level balance, i.e. that each level of one attribute appears
equally often with each level of another attribute. If the
levels of one attribute cannot be displayed alongside a
level of another attribute, achieving two-way level bal-
ance becomes impossible. In contrast, an alternative-spe-
cific design does not employ prohibitions, but instead
utilizes conditional attributes, which are controlled by
the levels of the primary attribute. This approach ensures,
similarly to using prohibitions, that certain attributes and
their levels are only displayed when a specific level of
the primary attribute is shown. However, by adopting this
methodology, D-efficient choice designs can be generat-
ed that are nearly orthogonal and level-balanced.

3.3. Different attributes per alternative

A simple modal-choice problem (bus versus car) from
Louviere and Hensher (1982) can serve as an example of
this type of ASD. Each travel mode is an alternative and
is represented by three different attributes with two lev-
els each (see Tub. 5).

In the example from 7ab. 5, the number of attributes per
alternative and the number of levels are identical, how-
ever, they could also vary as in the study of Anderson et
al. (1992) (see Tab. 6 below).

3.4. Primary (ASC level 1) and sub-primary
attributes (ASC level 2) (nested structures)

In the previous example of Anderson et al. (1992) start-
ing in Tab. 6, some attribute levels (e.g. for the attributes

Alternative No. of Attribute and Levels

Car 4 attributes, 3 levels each

Train 7 attributes, 6 with 3 levels, 1 with 2
Carpooling 6 attributes, 3 levels each
Bus 7 attributes, 6 with 3 levels, 1 with 2

Tab. 6. Example of different number of (conditional) attributes per
alternative (primary attribute) from Anderson et al., (1992), p. 52.

Bus Car
Attribute Levels Attribute Levels Tab. 5: Example of different
Fare 0.25¢€,0.50 € Gasoline cost 1.35€,1.75 € conditional attributes per alter-
Travel time 15 min, 40 min Travel time 10 min, 20 min native (primary attribute) from
Walking distance 1 block, 5 blocks Parking cost per hour 0.20€,0.50 € io?zlere and Hensher (1982),
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Car
ASC Level 1 ASC Level 2 (Distance) Conditional Attribute Levels
8 km 7.5 min, 10.0 min, 12.5 min
Travel time 16 km 15.0 min, 20.0 min, 25.0 min
24 km 20.0 min, 30.0 min, 40.0 min
8 km 2.00 €, 3.00 €, 4.00 €
Tab. 7. Example of primary and sub- Costs 16 km 3.00€,5.10€,7.20 €
primary alternative-specific attribu- 24 km 4.40 €. 7.00 €. 9.60 €
tes from Anderson et al., (1992), p. 53. ’ ’
Commute
[ Bl |
L1 “ Private Public
I — =
I [ | |
L2 -‘ Fly Drive ‘ Land Water ‘
- i : l 1 [ ]
o )
o = 5 Lo > i
) 5 g 3 g
Fig. 2: Three-level nested choice L3 % 'ﬁ g E E' a ‘g =
structure. Source: Greene, 2009, g >

p. 63.

travel time and fare/costs) were additionally made spe-
cific to the distance to the destination in order to design
more realistic profiles, creating a second level of alterna-
tive-specific attributes (sub-primary attributes). Tab. 7
provides an example of the primary and sub-primary at-
tributes of the car alternative in Anderson et al. (1992).

3.5. Two or more sets of primary attributes
(ASC level 3) (complex nested structures).

An example of this type of ASD is represented by a “tree
structure” in Fig. 2, following Greene (2009). Two
choices of commuting modes can be presented to the re-
spondents, private and public. Both the private and pub-
lic commute modes consist of two choices each: flying or
driving by car in case of the private commute, and going
by land or water in case of the public commute. Howev-
er, each of these choices is represented by further two op-
tions, creating a third level of primary attributes, which
can additionally be described by further modifying (con-
ditional) attributes.

4. Empirical case study

In this section, we would like to demonstrate in more de-
tail how to create and interpret results of an alternative-
specific CBC study, using a self-conducted study on
preferences for electric vehicles for illustration. We as-
sume that the reader is familiar with the estimation of the
standard and (HB) mixed MNL model and with the stan-
dard interpretation of estimation results (e.g. part-worth
structures, statistical performance measures such as like-
lihood ratio tests or odd ratios), and therefore refer the
interested reader to Elshiewy et al. (2019), Balderjahn et

al. (2021), and Goeken et al. (2021). Instead, we’d like to
focus on the particularities of ASD models regarding the
interpretation of attribute importances and the derivation
of willingness-to-pay quantities, which is more complex
and different from the standard CBC approach (i.e. when
using a generic main-effects design).

The data for our empirical study was collected in the
United Kingdom in September 2021, comprising a total
of 509 interviews and a final effective sample size of 494
respondents after data cleaning. Only respondents that
were e-mobility intenders and indicated to buy a new
electric SUV were admitted to participate in the study.
The alternatives offered to the respondents in the choice
task were electric SUVs, and the primary attribute was
represented by the brand (car manufacturer) and a car
model (e.g. Hyundai as the brand, Ioniq 5 Premium as
the car type). Each level of the primary attribute (i.e.
each electric SUV) had its own price range (conditional
attributes). Driving range and engine power were speci-
fied as common attributes since each of the SUV alterna-
tives could be equipped with a driving range between
200 miles and 400 miles and a power between 160 hp
and 280 hp. The full list of attributes and levels of the
UK electric SUV study can be found in 7ab. §.

We used the Sawtooth Software module for CBC analy-
sis to create the ASD design and to estimate the HB-
MNL model. The suggested design method for generat-
ing alternative-specific designs is the complete enumera-
tion algorithm (Sawtooth Software 2008, Sawtooth Soft-
ware Lighthouse Studio n.d.). In general, Complete Enu-
meration (CE) considers all possible concepts (except
prohibited ones) and is aimed at providing a design with
both one- and two-way level balance for the entire choice
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Attribute Type of attribute No. of levels Levels
VW ID.4 Pure Performance, VW ID.4 Pro Performance,
Car Model Skoda Enyaq iV60, Skoda Enyaq iV80, Audi Q4 e-tron
(bian do/ © ¢ of car) Primary attribute 10 35, Audi Q4 e-tron 40, BMW iX3 Premier Edition,
yp Mercedes EQA 250, Hyundai Ioniq 5 SE Connect,
Hyundai Ioniq 5 Premium
Driving Range Common attribute 5 200 miles, 250 miles, 300 miles, 350 miles, 400 miles
Power Common attribute 5 160 hp, 190 hp, 220 hp, 250 hp, 280 hp
Price VW ID-4 Pure | - | ditional attribute 5 £36.600, £ 39,600, £ 42,600, £ 45,600, £ 48,600
Performance
Price VWID.4Pro | gitional attribute 5 £38,600, £ 41,600, £ 44,600, £ 47,600, £ 50,600
Performance
f\r/lgg Skoda Enyaq | | ditional attribute 5 £31,400, £ 34,400, £ 37,400, £ 40,400, £ 43,400
f\?gg Skoda Enyaq | ditional attribute 5 £36,400, £ 39,400, £ 42,400, £ 45,400, £ 48,400
Z_rtf:n@‘;dl Q4 Conditional attribute 5 £38.300, £ 41,300, £ 44,300, £ 47,300, £ 50,300
Price Audi Q4 Conditional attribute 5 £41,300, £ 44,300, £ 47,300, £ 50,300, £ 53,300
e-tron 40
Price BMW iX3 Conditional attribute 5 £55.800, £ 58,800, £ 61,800, £ 64,800, £ 67,800
Premier Edition
Price Mercedes .. .
Conditional attribute 5 £ 41,600, £ 44,600, £ 47,600, £ 50,600, £ 53,600

EQA 250
Price Hyundai foniq | - 1 4ii0na1 attribute 5 £34,100, £ 37,100, £ 40,100, £ 43,100, £ 46,100
5 SE Connect
Price Hyundai Ioniq . .

; Conditional attribute 5 £39,100, £ 42,100, £ 45,100, £ 48,100, £ 51,100
5 Premium

Tab. 8: Attributes and levels in the electric SUV ASD-CBC study in the UK.

task (i.e. across respondents) and at creating concepts
(stimuli) that are nearly orthogonal within respondents
with respect to main effects (Chrzan and Orme 2000).
Level Balance implies that CE tries to consider any attri-
bute levels not shown to one respondent in the choice
task of the next respondent (i.e., in some more complex
studies one cannot show one respondent everything due
to a large number of attributes and/or levels). In other
words, CE tries all possible permutations for the next
concept and chooses the best one in terms of one- and
two-way frequencies to balance the entire design well
and thus to better realize orthogonality.

CE further strives for minimal overlap within each
choice set, which seems, at first glance, not beneficial for
estimating interaction effects (like one wants to do with
the primary-conditional attribute interactions in ASD-
CBC models). Moreover, if an attribute has as many or
more levels than the number of alternatives offered in a
choice task, it is almost impossible for an attribute level
to appear more than once within the same choice task us-
ing CE. However, in an ASD-model, the primary-condi-
tional attribute interactions are implicitly incorporated
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into the design, which makes CE applicable. CE does not
explicitly differentiate between ASD and generic de-
signs. However, due to the fact that CE does not generate
any overlap, it is easy to create one- and two-way level
balance if there is a conditional attribute (e.g. price) with
the same number of levels for each level of the primary
attribute. Otherwise, the algorithm can of course also
create almost perfect designs by trying to distribute a dif-
ferent number of levels of the conditional attributes in
the same way as generally in case of differences in the
number of levels of attributes in generic designs. In sum,
it is recommendable to use CE for alternative-specific
designs. Research has shown that generating fewer de-
sign versions while using this algorithm is generally
more beneficial than employing a simpler algorithm [1].
By doing so, CE maximizes the statistical design effi-
ciency while ensuring orthogonality and minimal overlap

[2].

However, to meet all these conditions for CE at the indi-
vidual respondent level, a large number of possible con-
cepts must be tested and then used to construct the choice
tasks. This process pushes the computational limits of

03.02.2026, 03:33:23. Inhalt.
I mit, fOr ode

Erlaubnis untersagt,

jerin



https://doi.org/10.15358/0344-1369-2025-2-30

Mirow/Kurz/Steiner, On the Use of Alternative-Specific Designs in Choice-Based Conjoint Analysis

even modern computers for larger problem settings [3]
(Sawtooth Software, 2011, p. 328). Therefore, CE can
become computationally too expensive in these situa-
tions and the shortcut algorithm (SC) could be used in-
stead. Unlike CE, SC optimizes the design only in terms
of one-way level balance at the individual respondent
level (i.e. there is no association between respondents
here in generating the design). Technically, SC always
starts over with a new design seed for the next respon-
dent to generate the choice sets for her/him [2], and
therefore chooses randomly among the currently least
represented levels in the design. Consequently, the two-
way frequencies suffer for the whole design, and thus on-
ly loose orthogonality can be attained, which results in
correlations between attribute levels. For very complex
ASD designs, even the shortcut algorithm can become
problematic in terms of computing time, leaving the
Random algorithm as another option for constructing
ASD designs. In this case, it seems recommendable to
switch to other packages for generating alternative-spe-
cific designs (e.g., SAS or Ngene). Furthermore, if bal-
anced overlap (the fourth algorithm available in the Saw-
tooth software) were used, an overlap would be created
between the conditional attributes, which is exactly what
one would like to exclude in an ASD.

Alternative-specific designs for choice experiments are
more complex and require defining which conditional at-
tributes will appear beneath the levels of the primary at-
tribute [4]. All levels of one conditional attribute may not
be shown with another level of the primary attribute.
Typically, each level of the primary attribute is available
in each choice set. To achieve this, the number of con-
cepts in a choice task should be equal to the number of
the levels of the primary attribute (Sawtooth Software
2008, p. 8). However, if the number of the levels of the
primary attribute is too high, which would make the
choice between this many alternatives for respondents
too burdensome, it is advisable to choose the number of
choice sets for each respondent in such a manner that all
levels of the alternative-specific (conditional) attributes
are shown at least once across all choice sets per respon-
dent to avoid missing preference information completely
for these levels and to achieve level balance in the de-
sign.

Our ASD-CBC design was generated with the CE algo-
rithm multiple times with varying numbers of versions
and from different starting points (design seeds). The re-
sulting design has been tested each time by applying the
advanced test in Sawtooth Software for the expected
number of respondents participating in the study to
achieve the best possible design in terms of standard er-
rors and D-efficiency. The advanced test in the Sawtooth
Software generates random data and uses the MNL mod-
el to estimate the effects (Sawtooth Software 2008).
Standard errors of the estimated utility parameters should
all be approximately of the same order of magnitude
(Kuhfeld 2010, p. 316). Please note that the size of the
standard errors for the effects of the conditional attribu-

tes will be greater than for the common attributes, but
nevertheless should not exceed 0.1 (Sawtooth Software,
2008). Further, estimated utility parameters from the ad-
vanced test that deviate more strongly from zero indicate
a not well-balanced design, inducing from scratch a bias
for parameter estimation when based on real respondent
data later (Kuhfeld 2010, p. 316). In addition to the stan-
dard statistical performance measures for model fit, such
as Log-Likelihood, Root Likelihood, Chi-Square, and t
statistics, the measure of D-efficiency became part of the
advanced design test output in the Sawtooth Software.
However, the software does not compute the D-value of
the optimal design given the number of attributes, attri-
bute levels, choice sets per respondent, and number of al-
ternatives in a choice set, which is why one can only
compare several generated designs against each other
and choose the one with the best D-value.

Our final design for the UK electric SUV study consisted
of 10 versions and included 10 random choice tasks (per
respondent) plus 2 fixed choice tasks (across respon-
dents) with 5 alternatives plus the “None” option in each
choice set. Five alternatives per choice set were chosen
to more easily enable level balance (remember that all at-
tributes were chosen to have five levels). Hence, all SUV
alternatives were shown once already after two choice
sets, implying that they were shown each respondent 5
times across the 10 choice sets. Accordingly, the levels
of the common attributes driving range and engine power
were shown each respondent 10 times across the 10
choice sets.

The coding of ASDs differs from generic main-effects
CBC designs. Considering the example of one choice set
from the UK electric SUV ASD-CBC study, where price
attributes were specific to each of the 10 electric SUVs,
the design matrix looks as displayed in 7ab. 9. For in-
stance, the alternative Mercedes EQA 250 was coded as
the eighth of ten levels of the SUV primary attribute,
leading to the coding ‘3’ for its conditional attribute
Price SUVS (representing the third price level) and O for
all other conditional price attributes that do not apply to
this particular SUV model. The same logic holds for the
other SUV alternatives with their alternative-specific
price attributes. The common attributes of Range and
Power had five levels each as well, thus the number in
the respective columns varies from 1 to 5 indicating the
present level of these common attributes, independent of
the primary attribute (SUV alternative).

To estimate the alternative-specific price effects, we de-
cided to also use the part-worth utility model due to its
higher flexibility to account for possibly nonlinear pat-
terns in price response. Therefore, the estimated MNL
model included 58 parameters (i.e. 9 for the primary at-
tribute, 4 for each of the ten conditional price attributes
and the two common attributes, and 1 for the none op-
tion) [5]. Alternatively, the conditional price effects
could have been modeled linearly as well. We further ap-
plied monotonicity constraints on the parameter esti-
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Alternative/ ey (&= 2 g3 €2 €2 g2 |3 |2 €2 €2 g3 |2
Attributes &7 & 5 § 5% 5% |3% 5% [5% 3% 3% 5% ¢&§° ;3
1))
Mercedes EQA 250 8 2 3 0 0 0 0 0 0 0 3 0 0
Skoda Enyaq iV60 3 1 1 0 0 2 0 0 0 0 0 0 0
Audi Q4 e-tron 40 6 5 5 0 0 0 0 0 5 0 0 0 0
VW ID. Pro 2 4 2 0 3 0 0 0 0 0 0 0 0
VW ID. 4 Pure 1 3 4 4 0 0 0 0 0 0 0 0 0
NONE 0 0 0 0 0 0 0 0 0 0 0 0 0
Tab. 9: Design matrix of the self-conducted study on preferences for electric SUVs in the UK.
Make and Car Model Driving Range Power Price
35.3% 30.8% 33.9%
VWD 4 Pure Performance (3.6-81.7%) (4.8-72.9%) (0.1-82.5%)
29.6% 25.9% 44.5%
VWID 4 Pro Performance (2.6-77.6%) (3.2-67.7%) (0.1-88.6%)
. 34.6% 30.0% 35.4%
Skoda Enyaq V60 (3.0-86.7%) (4.3-76.3%) (0.5-84.7%)
. 31.9% 27.9% 40.2%
Skoda Enyaq V80 (2.6-78.6%) (3.8-69.7%) (0.2-86.9%)
. 32.6% 28.2% 39.2%
Audi Q4 e-tron 35 (2.9-80.8%) (4.8-73.2%) (0.4-84.6%)
. 29.4% 25.6% 45.0%
Audi Q4 e-tron 40 (3.8-65.8%) (25.2-65.5%) (3.2-79.3%)
. . » 38.2% 32.3% 29.5%
BMW iX3 Premier Edition (6.5-80.1%) (6.0-72.1%) (3.9-74.1%)
29.2% 25.4% 45.5%
Mercedes EQA 250 (3.2-70.1%) (4.8-70.3%) (0.3-83.1%)
. 35.7% 31.1% 33.2%
Hyundai loniq 5 SE Connect (3.4-85.9%) (4.3-74.2%) (0.1-88.2%)
Hyundai Ioniq 5 Premium 31.9% 27.8% 40.3%
yu 4 (4.3-75.8%) (5.0-71.9%) (0.1-87.2%)

Tab. 10: Average attribute importances (across respondents) per SUV model in the ASD-HB-MNL model (range of individual attribute
importances in parentheses). N=494.

mates of the price attributes to guarantee economically
plausible price utility curves. Especially when respon-
dents are confronted with totally realistic prices for a re-
spective SUV alternative, as is the case with the em-
ployed ASD (but not necessarily with standard CBC
models based on generic designs), it can be assumed that
higher price levels are associated with lower utilities.
Furthermore, it is well known that imposing monotonici-
ty on price effects can improve the predictive model per-
formance (e.g. Brezger and Steiner 2008). Estimation of
the HB-MNL model was carried out by the Monte Carlo
Markov Chain (MCMC) procedure implemented in the
Sawtooth software, and we eventually used a total of
1,000 draws for each respondent from the converged
MCMC chain for parameter estimation [6].

As mentioned above, we further used two holdout
choice tasks to assess the predictive validity of the
ASD model, resulting in out-of-sample hit rates of .472
and .516. With six alternatives in the choice task (in-
cluding the none option), hit rates in both holdouts are
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about three times higher than the chance probability of
0.167.

In the following, we elaborate on the particularities of
ASD-CBC models regarding the computation and inter-
pretation of attribute importances and the calculation of
related willingness-to-pay quantities. It is not possible to
isolate the relative importance of each attribute in an
ASD-CBC study, which is standard in CBC studies that
are based on generic main-effects designs. The computa-
tion of importance scores requires the independence of
attributes. However, the ASD implicitly comprises inter-
actions between primary and conditional attributes. In
case of our study, prices were specified to be conditional
attributes upon the electric SUV models. Hence, the ef-
fects of the primary attribute (SUV model) and the alter-
native-specific prices cannot be evaluated independently
from each other. It is only possible to determine the attri-
bute importance of the price per specific electric SUV,
i.e. conditional upon each level of the primary attribute
(see Tub. 10).
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Driving range is the most important attribute of the
BMW iX3 Premier Edition, which is by far the most ex-
pensive SUV alternative. For the VW ID.4 Pure Perfor-
mance, the Skoda Enyaq iV60, and the Hyundai Ioniq 5
SE Connect, all three attributes (range, power, price) turn
out to be roughly equally important. Furthermore, the at-
tribute importance of price is substantially higher for the
more expensive trim levels of the car manufacturers of-
fering two SUV alternatives (i.e. VW, Skoda, Audi, and
Hyundai). For these SUVs, price is clearly the most im-
portant attribute. Since VW, Skoda, and Hyundai were
the brands with the lowest prices in the UK market for
electric vehicles at the time the data were collected, it
seems to be plausible that consumers who choose these
brands might be more price-sensitive, when considering
a more expensive trim level of these car manufacturers.
Finally, price is also the most important attribute of the
Mercedes EQA 250. Because of the limited interpretabil-
ity of attribute importances in ASD-CBC models, choice
simulations are all the more important for these type of
CBC models.

If a researcher would like to calculate willingness-to-pay
(WTP) quantities based on the results of an ASD-CBC
study, it is strongly recommended to consider the follow-
ing. For changes in the levels of the primary attribute, the
corresponding WTP values can be determined as usual in
conjoint studies by means of choice simulations, but only
as far as the ranges of levels of the conditional prices
overlap or at least have one joint price point. Transferred
to our empirical SUV example, this means that a con-
sumer’s willingness to pay for switching from e.g. the
VW ID.4 Pro Performance to the Audi Q4 e-tron 40 can
only be calculated if an overlap between the two electric
SUVs conditional price ranges or at least one common
anchor price point (price ranges border one another) was
included in the design. If no overlap between the ranges
of the conditional price attributes would exist, no compa-
rable WTP quantities can be calculated. Of course, the
specification of the conditional price ranges should be re-
alistic and be based on the current market situation. As
can be seen from Tab. 8, WTP calculations could be per-
formed for each two SUV alternatives except BMW (i.e.
for 9 out of 10 SUV models), since the ranges of the con-
ditional price attributes for these 9 alternatives pairwise
overlap. No WTP calculations can be made for the BMW
iX3 Premier Edition, whose lowest price level is still
higher than the upper bound price point of the price
ranges of each of the other 9 SUV alternatives. More-
over, in our example, it is possible to define one single
joint price point for all these 9 SUV alternatives, so that
WTP values can become still more comparable between
the different SUVs (i.e. between all levels of the primary
attribute except BMW).

WTP quantities (e.g. for switching from one to another
SUV model in our study) from conjoint studies can gen-
erally be determined by employing choice simulations
based on the estimated individual-level part-worth utili-
ties of the respondents. For this, a specific product con-

figuration with two product concepts equivalent in all at-
tribute levels including the price except the one attribute
of interest (for which the WTP is to be determined) has
to be defined as a starting point. Continuing our example
for the VW ID.4 Pro Performance and the Audi Q4 e-
tron 40 from our UK ASD-CBC study, both SUVs would
have to be firstly configured to have the same range,
power, and price. Subsequently, WTP could be deter-
mined by searching for the price of the Audi Q4 e-tron
40 (VW ID.4 Pro Performance) that leads to equal choice
shares (50 %) for the two alternatives. That means, apart
from the need to have a joint starting price point for two
alternatives, there is no difference in WTP simulations
compared to standard main-effects CBC studies. Note,
however, that different price parameter estimates ob-
tained for the different conditional price attributes (de-
pending on the SUV alternatives considered) enter the
market simulation here. Usually, the basic price for simu-
lations to calculate the WTP for the change in the attribu-
te level is the average price in the design, the average
market price or the price of the main competitor. To illus-
trate the calculation of WTP quantities, we have selected
the price of £ 42,000 as a joint anchor point to be able to
compare the WTP for the primary attribute car model
(compare Tab. 8) between three SUVs as example alter-
natives, the Volkswagen ID.4 Pro Performance, the Sko-
da Enyaq iV80, and the Audi Q4 e-tron 40. Actual prices
of the three SUVs at the time the study was conducted in
the UK were £40,130 for the Skoda Enyaq iV80,
£ 42,520 for the Volkswagen ID.4 Pro Performance, and
£ 46,065 for the Audi Q4 e-tron 40. Therefore, the select-
ed joint anchor price of £ 42,000 roughly corresponds to
the average price between the three SUVs and thus fol-
lows the suggestion for the selection of the basic price
for the WTP calculations quite well. Also note that re-
spondents’ price utilities for the price of £ 42,000 are de-
termined for each model by linear interpolation between
the adjacent price levels, respectively. Fig. 3 shows that,
assuming each time equally equipped cars regarding
driving range and engine power were presented, respon-
dents in the UK would be willing to pay a £ 6,420 price
premium for the Volkswagen ID.4 Pro Performance com-
pared to the Skoda Enyaq iV80. However, when the
Volkswagen ID.4 Pro Performance is compared to the
Audi Q4 e-tron 40, respondents would be willing to pay
£ 6,144 extra for the same electric SUV from Audi. The
obtained WTP values for the three SUV car models (pri-
mary attribute) are a bit more symmetrical compared to
the actual price differentials, however the price premi-
ums turn out about two times higher. Obviously, the re-
spondents were willing to pay more than the actual price
differences. This demonstrates the necessity to collect a
CBC study for supporting pricing decisions, the more
when the product category is relatively new on the mar-
ket and preference structures of customers are probably
not yet fully developed.

For common attributes, WTP calculations are only possi-
ble conditional on a particular level of the primary attri-
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bute. Transferred to our example, WTP for an upgrade in
the driving range or horsepower can only be determined
for a particular SUV alternative and not independently
across the board for all SUVs. Seemingly a limitation at
first glance, it can make perfect sense that the price re-
sponse for changes in the driving range and horsepower
can be very different for more versus less expensive cars.
In other words, the possibility to compute an alternative-
specific WTP for common attributes can be seen as an
additional advantage of an ASD. In addition, opposed to
WTP calculations for the levels of the primary attribute,
overlaps between the alternative-specific price ranges are
not absolutely necessary for common attributes. Howev-
er, a joint price point in the brand-specific price ranges
additionally enables the comparison of WTP values be-
tween the different alternatives. To illustrate the latter,
we have chosen three electric SUVs (VW ID.4 Pure Per-
formance, Audi Q4 e-tron 40, and Mercedes EQA250)
from our ASD-CBC study and calculated WTP quanti-
ties for the common attribute of driving range (see Fig.
4). We have once more selected the price of £ 42,000 as
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Fig. 4: WTP for I mile of addi-
tional electric driving range for
selected electric SUVs in the
UK.

350-400 miles

joint anchor point to be able to compare the WTP for an
additional mile of driving range between all three SUV
alternatives (one could perform this exercise at this par-
ticular price point for all other SUVs alternatives except
the BMW iX3). The SUV-specific price utilities for
£ 42,000 (per respondent) were as before obtained by lin-
ear interpolation between the adjacent price levels for
which part-worth utilities were estimated based on the
ASD (per SUV alternative, e.g. by linear interpolation
between £ 39,600 and £ 42,600 for the VW ID.4 Pure
Performance, see Tab. 8).

The quantities shown in Fig. 4 represent the WTP values
for one additional mile of driving range depending on the
assumed current driving range level. For example, if the
VW ID.4 Pure Performance is equipped with a driving
range of 200 miles, respondents would be willing to pay
£ 16 for each additional mile in the interval between 200
and 250 miles. Note that WTP values differ both depend-
ing on the particular electric SUV everything else being
equal and for different starting points of driving range.
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The former is accomplished due to the use of alternative-
specific price attributes. The latter is due to the part-
worth model used for estimating price utilities (as well as
for the utilities of the common attributes) and enables un-
covering non-linearities in price response and related
WTP values for a different current equipment in driving
range. Using a linear model for price response would im-
ply that the WTP for an additional mile of driving range
is independent from the driving range of an SUV alterna-
tive (hence equal for different starting points of driving
range), which seems unrealistic. We see that for all three
SUVs, WTP is lowest in the interval between 250 and
300 miles and highest for changes in the driving range in
the interval from 350 to 400 miles. As we can see, there
is no monotonic increase in WTP for an increasing driv-
ing range. Note that monotonicity constraints were only
imposed to the price attributes but not to the common at-
tributes, which otherwise would have distorted the clear-
ly non-monotonic true preference structures of the re-
spondents regarding driving range.

Overall, respondents in the UK are willing to pay more
for an additional driving range of an Audi Q4 e-tron 40
than of a VW ID.4 Pure Performance or a Mercedes
EQA250, all else (price and engine power) being equal.

5. Advanced Modeling Options for ASD-CBC
Models

At this place, it is important to point to novel and/or
more advanced approaches for improving CBC models.
Such developments include hybrid choice models, more
flexible (nonparametric or learning) choice models to ac-
commodate nonlinear utility specifications, as well as
Al-based applications in different phases of conjoint
studies. All these approaches can be adapted to further
expand an ASD-CBC model, as proposed in this manu-
script.

5.1. Hybrid choice models

The idea of hybrid choice models is to additionally in-
clude latent psychological factors in a choice model in
order to explain parts of the unobserved heterogeneity of
respondents (Ben-Akiva et al. 2002). Since psychologi-
cal factors, like perceptions, attitudes, beliefs, motives,
social network influences, etc., are not directly observ-
able, they need to be measured via indicator variables us-
ing additional survey questions within a CBC study. For-
mally, a hybrid choice model integrates a discrete choice
model and a latent variable model into a single estima-
tion framework, allowing the latent psychological vari-
ables to be treated as additional predictors in the respon-
dents* utility functions for the choice alternatives (Kim et
al. 2014). Examples of psychological factors used in hy-
brid choice models in the context of travel mode/vehicle
type choice in general, or (electric) car choice in particu-
lar, comprise perceptions of comfort and convenience
(Walker and Ben-Akiva 2002), attitudes toward the envi-
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ronment (e.g. Daziano and Bolduc 2013), or the attitude
towards leasing of an electric car (Glerum et al. 2013).
Importantly, Bahamonde-Birke et al. (2017) emphasized
that attitudes, values, or personality traits are individual-
specific latent predictors, while perceptions additionally
depend on the alternative (cited according to Pickens
2005), which opts for an alternative-specific hybrid
choice model even if the manifest product attributes were
all generic. Mariel (2024), however, has recently warned
against a too careless application of the much more com-
plex hybrid choice models in case of the typically small
sample sizes and/or unvalidated scales for the latent vari-
ables. Finally, as a preliminary result of an empirical
study, Mariel and Meyerhoff (2016) suggest preferring a
hybrid choice model if the focus lies on “disentangling
preference heterogeneity”, while a standard choice mod-
el (like the mixed logit model) if predictive performance
is more important. An alternative but much less complex
approach to consider psychological factors of decision-
makers would be to reparametrize estimated individual
part-worth utilities as a function of these covariates in the
upper level of a hierarchical choice model or in a second
independent step subsequent to the estimation of the
choice model.

5.2. Nonlinear utility functions

A different possibility to expand an ASD-CBC model is
to relax the assumption of linear utility that is predomi-
nant in discrete choice modelling. Note that nonlineari-
ties for non-categorical attributes (such as price) can al-
ready be accommodated in standard discrete choice mod-
els with a linear utility function in terms of piecewise lin-
ear functions along the support points generated via the
predefined levels of an attribute, provided a part-worth
utility function is estimated for these attributes. In order
to address more complex nonlinearities, that are hard to
capture even by parametric non-linear functions (i.e. in-
trinsically non-linear or irregular utility shapes caused
for example by distinct threshold and/or saturation ef-
fects), more flexible estimation techniques, like splines
or artificial neural networks (ANNSs) have been devel-
oped. Kim et al. (2007) proposed splines of the truncated
power basis for capturing individual latent utilities in
choice models. Schindler et al. (2007) employed linear
splines and bivariate tensor products of splines to repre-
sent piecewise linear functions for price effects. Hrusch-
ka et al. (2002, 2004, 2007) developed ANN based
choice models by replacing the linear utility function by
a multilayer perceptron, respectively. Still earlier, Bentz
and Merunka (2000) had also used a neural net extended
choice model, and Abe (1999) embedded GAM into their
choice model to capture nonlinear utilities. From all the
mentioned approaches, only Kim et al. (2007) applied
their nonlinear modelling framework to CBC data, while
all other researchers demonstrated the power of the more
flexible techniques to improve the predictive model per-
formance in the context of household panel data. From
our perspective, one reason for this might be that panel
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data provide a larger number of different support points
(e.g. more different price levels), which makes the appli-
cation of nonparametric estimation technique more
promising.

Opposed to the early neural net approaches in this field,
the terminology for these kinds of models has moved to-
wards the terms “deep choice models” or “learning
choice models”. Recently, Su et al. (2022) went one step
further and introduced an alternative-specific deep
choice model for transit route choice analysis. They also
used a multilayer perceptron to approximate nonlinear
utility functions, but they relaxed the assumption that all
alternatives must share the same (common) attributes.
More formally, connection weights of the network archi-
tecture were now specific to alternatives. Han et al.
(2022) proposed to separate the utility into two parts: a
flexible one where interactions between (alternative-spe-
cific) attributes and individual respondents‘ characteris-
tics can be captured via a neural net, and the usual para-
metric part of a choice model. As such, coefficients of
(some) attributes were nonlinearly reparametrized as
functions of individual background covariates in the
flexible part, while keeping the parametric part preserves
model interpretability. However, the approach of Han et
al. (2022) doesn’t capture nonlinearity in attributes.

5.3. Artificial Intelligence

As in all research fields, discussions on Al and its impact
on methodologies are also emerging in the domain of
conjoint analysis and discrete choice models. Still, it is
essential to differentiate between the various phases of
conjoint studies in which Al could be applied. Al can
certainly assist in the creation of stimuli for conjoint
studies. Often, only a subset of stimuli is available as im-
ages (or real products), and Al can be useful in generat-
ing and preparing missing product combinations. There
are already successful applications in this area, and it is
expected that Al will soon be used more frequently (Dot-
son 2024). However, in the present empirical electric car
study of this paper, all stimuli were physically available.

Regarding the construction of experimental designs, Al-
based ANNs could, in principle, generate experimental
designs that surpass existing approaches, provided that
sufficient training data is available. A key challenge here
lies in generating candidate sets suitable for training uni-
versal ANNs capable of handling all aspects of design
generation. To date, research has mainly focused on spe-
cific design challenges (Kurz & Binner, 2020). The pri-
mary limitation is the high computational power required
to train such networks, making implementation costly. It
remains to be seen whether large language models
(LLMs) such as ChatGPT, DeepSeek, or Claude will be
able to address these challenges in the future. Nonethe-
less, this area certainly holds potential. The experimental
design used in this study, which follows the complete
enumeration approach, is already statistically efficient,
making significant improvements unlikely.
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Al as a tool for conducting surveys faces challenges, par-
ticularly in conjoint analysis, where simulations often in-
volve future products not yet on the market. Since Al
models rely on historical training data, they frequently
lack information relevant to new product launches. How-
ever, Al already shows promise as a support tool for de-
signing studies and conducting preliminary assessments
of market potential. In the present study, which focuses
on electromobility — a product category that was, at the
time of investigation, a new market introduction — using
Al would not have been appropriate.

Al can already estimate part-worth utilities from survey
data with valid results. Existing routines enable multino-
mial logit (MNL) estimations and allow for the analysis
of both aggregate and individual-level utility values (Be-
lyakov 2018). However, Al-based approaches have not
yet demonstrated superior accuracy compared to estab-
lished methods such as bayesm, Mlogit, or Latent Gold
(Alwosheel et. al. 2017). Consequently, the choice of
technique remains at the discretion of the researcher.
Given that traditional methods can typically be run on
standard workstations, cost considerations may often dis-
courage the use of Al

6. Summary, Limitations, and Outlook

This paper dealt with the use of alternative-specific de-
signs (ASD) in choice-based conjoint (CBC) studies.
There is clearly not enough attention paid to the use of
ASDs both in the academic marketing literature and in
marketing research practice, as opposed to transportation
research and applications in other fields such as urban
planning, environmental economics, and health econom-
ics. We wanted to shed more light on this topic by work-
ing out that an ASD is always reasonable to determine
consumer preferences (a) if alternatives (products) share
the same attributes but customer responses to changes in
at least one of these attributes depend on the specific al-
ternative and/or (b) if the range of feasible attribute lev-
els is different for different alternatives. In the latter case,
using a generic instead of an alternative-specific re-
sponse modeling would additionally lead to unrealistic
product configurations consumers were confronted with
when choosing from alternatives and as a consequence
most likely to biases in estimated parameters and predic-
tion biases in subsequent market simulations. Further-
more, we intended to develop a typology of ASDs to sen-
sitize readers regarding the different possible options of
specifying an ASD structure in CBC studies. To illustrate
the advantages of ASDs and to especially work out the
particularities of interpreting attribute importances from
an ASD-CBC study and calculating willingness-to-pay
quantities for different types of attributes of ASDs (pri-
mary versus common attributes), we used a self-conduct-
ed empirical ASD-CBC study on preferences for electric
SUVs in the UK. We also discussed promising conceptu-
al and methodological advancements proposed in the ac-
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ademic literature to further enrich ASD-CBC models and
improve their performance. In particular, we focused on
hybrid choice models as well as nonlinear specifications
of utility to increase the functional flexibility for parame-
ter estimation. Not least, we added a discussion on the
state-of-the-art how Al is already influencing the field of
conjoint analysis and DCE.

From a theoretical or conceptual perspective, ASDs are
much more flexible to uncover the true preferences of
consumers correctly. Nevertheless, some disadvantages
or limitations of ASDs are noteworthy. Since ASD or
“labeled” experiments usually involve the estimation of
both alternative-specific and generic parameters (Rose et
al. 2008, p. 398), an ASD-CBC model comprises a high-
er number of parameters to be estimated compared to a
standard generic or main-effects CBC model. A larger
number of parameters generates more flexibility and is
expected to lead to less bias for parameter estimates, yet
at the same time reduces the available individual respon-
dent information per parameters und thus increases the
variance (statistical uncertainty) in the model (Wittink
2000, p. 229). In other words, even if an ASD might pro-
duce more realistic product configurations to be evaluat-
ed by respondents, the bias-variance trade-off eventually
determines the quality of predictions for new data or, like
illustrated in this contribution, of WTP calculations.
Therefore, the specification of alternative-specific attri-
butes and levels must be done with great care and with
regard to the individual market conditions. For example,
it might be reasonable to estimate only one linear price
effect per level of the primary attribute instead of one
part-worth utility for each discrete price point (like in our
SUV example), if nonlinearities in price response were
known to play only a minor role in the considered mar-
ket. This would lead to a largely reduced number of alter-
native-specific price parameters in the ASD model. One
could also think about estimating price effects at the tier-
level by defining the same price points for similar levels
of the primary attribute (e.g. if similarly priced premium,
national, or private label brands exist) and grouping con-
ditional price attributes for estimation.

Another approach to improving outcomes in ASD mod-
els with a high number of parameters is the use of mono-
tonicity constraints for vector attributes, such as the price
attribute in our SUV study. The application of monoto-
nicity constraints can be particularly helpful when non-
linear alternative-specific effects are expected (e.g.,
threshold effects in price sensitivity) and the researcher
does not wish to reduce the number of parameters by as-
suming linear effects in the model (as this would obscure

Appendix: Implementation of Monotonicity
Constraints

Monotonicity constraints can be implemented through
various techniques. The most widely used technique is
“Simultaneous Tying” which discards an entire draw
when a reversal occurs (Sawtooth Software, 2016). How-

existing nonlinearities). In this case, introducing monoto-
nicity constraints is advisable, as this not only stabilizes
parameter estimates (lower variance) but also produces
economically plausible results. Without the use of con-
straints, reversals might frequently occur, since in com-
plex ASD models the number of observations at the indi-
vidual level is relatively low compared to the number of
parameters to be estimated. A number of options how
monotonicity constraints can be employed in ASD-CBC
models are discussed in the appendix to this paper.

In our opinion, much more attention to the practical im-
plications of alternative-specific designs for CBC studies
is required in the marketing literature. More academic re-
search is needed to assess the trade-off between the clear
conceptual advantage of ASDs over generic choice de-
signs for data collection and the resulting higher model
complexity from a statistical perspective (parameter esti-
mation and model validation).

Notes

[1] The number of versions represents the number of different
choice tasks (composition of choice sets) on the respondent
level. For example, with 100 respondents and 10 versions, ev-
ery 10™ respondent gets the same choice task. The number of
versions have also an impact on the statistical efficiency of a
design.

[2] Based on the expert opinion of Peter Kurz, one of the leading

market researchers worldwide for choice-based conjoint anal-

ysis and currently managing partner at bms marketing re-
search+strategy, https://bms-net.de/

We ran our empirical study on a Core i7 Laptop (11™ genera-

tion) with 4 cores and 32GB RAM. The generation of the de-

sign for our ASD model with 58 parameters (among them on-
ly 9 parameters for the two common attributes and the none
option, and the rest for the primary and conditional attributes)
took about 60 minutes. All else being equal, doubling the lev-
els of the primary attribute (i.e. 20 instead of 10 SUV models)

would increase the computing time by about a factor of 4.

Note that multiple runs with different random seeds and other

modifications are oftentimes necessary for complex designs

(as occurring in studies for frequently purchased consumer

goods with many SKUs).

[4] As noted before, imposing prohibitions on generic main-ef-
fects designs often significantly decreases the statistical effi-
ciency of a design. This does not apply to alternative-specific
designs where interactions are implicitly incorporated.

[5] Note that, in the part-worth utility model, one level of each at-
tribute has to be defined to constitute the reference category
with a fixed part-worth utility of either O (in the case of dum-
my-coding) or the negative sum of estimated part-worth utili-
ties for the other levels of this attribute (in case of effects-cod-
ing).

[6] More details about model estimation as well as all results re-
garding parameter estimates and model performance statistics
are available from the authors upon request.

3

—_—

ever, if many draws need to be discarded, this can nega-
tively impact the convergence of the HB sampler. Addi-
tionally, in the case of a monotonically decreasing ar-
rangement of part-worths, the commonly used multiple
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normal distributions tend to draw frequently from the
positive region of the distributions, which increases the
number of part-worths that are reversals. Therefore, a
second often proposed technique is the use of a truncated
normal distribution, which avoids positive part-worths
due to the fact that only the negative part of the distribu-
tion is used (Pachali et al., 2020). Another approach to
solving this issue is the logarithmic transformation of the
price parameters, which also prevents reversals during
the drawing of samples. However, this technique re-
quires a back-transformation of the price part-worths af-
ter estimation is completed to ensure comparability with
the non-transformed part-worths (Allenby et al., 2014).
A relatively simple and practical method was suggested
by Rich Johnson, which he termed tie-draws. In this
method, all draws are initially used, and after the model
converges, a large number of draws are saved. From
these saved draws, any that show reversals are eliminat-
ed, leaving only the draws without reversals at the end of
the estimation process. The advantage of this approach is
that, unlike the first method, it does not interfere with the
estimation process itself, and therefore has no negative
impact on model convergence (Sawtooth Software,
2016).
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