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AIM4M: MLOps strukturiert
im Produktionsumfeld
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ZUSAMMENFASSUNG Der produktive Einsatz von Kl

in der Industrie scheitert oft nicht an der Modellentwicklung,
sondern am stabilen Betrieb im Produktionsumfeld. Al Asset
Management for Manufacturing (AIM4M) ist ein Prozessmodell
fir den Kl-Lebenszyklus in cyber-physischen Produktionssyste-
men (CPPS) mit Fokus auf die Operationalisierung. Es erganzt
dazu den Ansatz von Machine Learning Operations (MLOps)
aus der IT um CPPS-spezifische Feinheiten - als praxisnaher
Orientierungsrahmen.
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1 Einleitung

Kiinstliche Intelligenz (KI) gilt als ein zentraler Baustein fiir
die digitale Transformation in der industriellen Fertigung [1].
Thre Potenziale in der Anwendung (etwa die frithzeitige Fehler-
erkennung, adaptive Prozessregelung oder pridiktive Instand-
haltung) sind weitreichend und gut erforscht [1, 2]. Dennoch
zeigt die Realitdt in den Produktionshallen, dass viele KI-Projekte
nicht tiber eine erfolgreiche Prototypenphase hinauskommen oder
nach kurzer Zeit im Betrieb scheitern [3]. Die Ursachen liegen
selten in der Qualitit der Algorithmen, sondern vielmehr im
fehlenden strukturierten Vorgehen bei der Operationalisierung —
also beim Ubergang von der Idee zur stabil betriebenen und
wartbaren KI-Losung im realen Produktionsumfeld. Die Heraus-
forderung steigt weiter, wenn diese Losungen innerhalb von
cyber-physischen Produktionssystemen (CPPS) laufen, also in
Systemen mit engen Echtzeitanforderungen, hohem Integrations-
grad und anspruchsvollen Sicherheits- und Qualititsanforderun-
gen [4].

Um diese Herausforderungen zu adressieren, etabliert sich zu-
nehmend das urspriinglich aus der IT kommende Konzept der
Machine Learning Operations (MLOps). MLOps verspricht, den
Lebenszyklus von KI-Losungen ganzheitlich zu betrachten, von
der Datenbereitstellung iiber Modelltraining bis hin zu Betrieb,
Uberwachung und kontinuierlicher Verbesserung [5]- Gerade im
industriellen Kontext wird der jedoch Begriff oft uneinheitlich
verwendet oder auf Teilbereiche reduziert. Hiufig fehlt das ganz-
heitliche Verstindnis, wie ein vollstindiger KI-Lebenszyklus im
Zusammenspiel mit technischen Systemen, Qualititssicherung,
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AIM4M: Structured MLOps
for Manufacturing Al

ABSTRACT Implementing Al in manufacturing does not
necessarily fail because of model creation but is often due to

a lack of reliable operation within production environments.

Al Asset Management for Manufacturing (AIM4M) is a process
model for the Al lifecycle in cyber-physical production systems
(CPPS) with a focus on operationalization. It supplements the
Machine Learning Operations (MLOps) approach from IT with
CPPS-specific characteristics — as a practical orientation frame-
work.

regulatorischen Anforderungen und operativer Verantwortung
aussehen sollte.

Hier setzt das Prozessmodell AIM4M (Al Asset Management
for Manufacturing) an, als ein strukturierter Orientierungsrah-
men fiir den Einsatz von MLOps im Kontext von CPPS [6]. Es
adressiert explizit die Anforderungen, die beim praktischen Be-
trieb, der Weiterentwicklung (Update-Phase im Betrieb) und dem
Riickbau von KI-Losungen entstehen, also jenen Phasen, die im
klassischen KI-Projekt oft nicht systematisch mitgedacht werden.

2 Stand der Technik und
Herausforderungen beim Kl-Betrieb

Um ein tragfihiges Prozessmodell fiir den Lebenszyklus von
KI-Anwendungen in der industriellen Produktion zu entwickeln,
miissen zunichst die zentralen Rahmenbedingungen und beste-
henden Herausforderungen verstanden werden. In den folgenden
Abschnitten werden dazu drei zentrale Themenbereiche betrach-
tet:

1. Die Rolle von CPPS fiir die Industrie-4.0-Initiative

(Kapitel 2.1),

2. die Struktur typischer KI-Lebenszyklen mit MLOps

(Kapitel 2.2) und
3. die regulatorischen Anforderungen an den KI-Einsatz im

Kontext der Produktion (Kapitel 2.3).

Die daraus abgeleiteten Anforderungen werden in Kapitel 2.4 zu-
sammengefasst und bilden die Grundlage fiir die anschliefende
Analyse bestehender Prozessmodelle und die Entwicklung des
AIM4M-Modells.
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2.1 Cyber-physische Systeme in der Fertigung

CPPS stellen die industrielle Auspragung cyber-physischer
Systeme (CPS) dar, bei denen physische Prozesse eng mit digita-
len, vernetzten IT-Komponenten gekoppelt sind [7]. In der Ferti-
gung ermdglichen sie den Echtzeitaustausch grofler Datenmengen
zwischen Maschinen, Robotern, Sensoren und IT-Systemen wie
Datenbanken oder Softwarelosungen [8]. Diese Integration erdff-
net fortschrittliche Analyse- und Steuerungsfunktionen zur Stei-
gerung von Effizienz, Flexibilitit und Reaktionsgeschwindigkeit
in Produktionsumgebungen.

CPPS gelten damit als zentrale technologische Grundlage fiir
die Realisierung von Industrie-4.0-Visionen. Durch die fort-
laufende Entwicklung hin zu hochgradig vernetzten, datengetrie-
benen Systemen spielen sie eine Schliisselrolle bei der Gestaltung
nachhaltiger und anpassungsfihiger Produktionsprozesse. Die
Integration von KI beziehungsweise von Verfahren des maschi-
nellen Lernens (ML) verstirken diesen Trend, da diese Technolo-
gien eine schnelle Analyse grofler Datenmengen erlauben und so
pradiktive Fihigkeiten sowie autonome Entscheidungsfindung in
der Produktion ermdglichen [4].

Aufgrund dieser CPPS-Spezifika miissen Lebenszyklusmodelle
fiir KI im MLOps-Ansatz neben softwareseitigen Komponenten
(etwa Datenpipelines und Versionierung) auch den operativen
Betrieb im produktionsnahen Hardwarekontext beriicksichtigen.
Doch wihrend aktuelle Ansétze zunehmend Aspekte wie Monito-
ring und Deployment adressieren [9], bleibt die methodische Ein-
bindung solcher physischen Produktionsumgebungen, vor allem
unter Echtzeitanforderungen, bislang in etablierten Lebenszyklus-
modellen weitgehend unbeachtet [10].

2.2 Kl-Lebenszyklus in MLOps und Industrie 4.0

Mit der zunehmenden Relevanz von KI-Systemen in der
industriellen Produktion wichst auch der Bedarf, deren gesamten
Lebenszyklus systematisch zu gestalten. Die Basis des typischen
KI-Lebenszyklus umfasst mehrere iterative Phasen, die durch
Feedback-Schleifen miteinander verbunden sind: von der Daten-
vorbereitung und Modellierung tiber die Evaluierung und Inte-
gration bis hin zum operativen Einsatz und zur Weiterentwick-
lung [5, 11]. Bekannte Ansitze wie CRISP-ML(Q) gehen dabei
iiber klassische Modelle hinaus, indem sie Qualitdtssicherung (in
Form von Priifpunkten zur Qualititssicherung) und Feedback-
Mechanismen explizit integrieren [12]. Sie bieten damit wichtige
Impulse fiir eine praxisgerechte Gestaltung des KI-Lebenszyklus
in der Industrie, bilden aber die besonderen Anforderungen von
CPPS nicht vollstidndig ab.

Im industriellen Kontext treten besondere Herausforderungen
auf. Anders als bei rein digitalen Produkten muss KI in Produkti-
onssystemen dauerhaft unter variablen Bedingungen performant
und sicher sowie nachvollziehbar arbeiten. Daraus ergibt sich die
Notwendigkeit eines stabilen Feedback- und Monitoring-Mecha-
nismus, der nicht nur die Performance iiberwacht, sondern auch
Veranderungen in Daten oder Prozessen erkennt und Nutzer-
Feedback aus der Anwendung direkt integriert [9].

Ein weiterer zentraler Aspekt ist die Rollenverteilung im
Lebenszyklus. Industrieorientierte Ansitze heben hervor, dass der
Erfolg von KI-Projekten nicht allein von KI-Experten abhingt,
sondern ein Zusammenspiel mit mehreren Rollen aus der Domi-
ne erfordert, wie Datenwissenschaftlern, Stakeholdern und Daten-
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und Softwareingenieuren [5, 11]. Dabei werden in [13] weitere
Tatigkeiten der MLOps-Domine beschrieben, die die Notwendig-
keit von Hardware- und Infrastrukturexperten sowie Qualititsin-
genieuren implizieren. Eine explizite Erwdhnung und Definition
dieser notwendigen Rollen im KI-Lebenszyklus fehlt jedoch in
gingigen Prozessmodellen.

2.3 Regulatorische Anforderungen
an KI-Anwendungen in der Produktion

Der Einsatz von KI in der Produktion bringt nicht nur techni-
sche, sondern auch regulatorische Herausforderungen mit sich.
Mit dem EU-AI-Act riicken zunehmend Anforderungen in den
Fokus, die auf Transparenz, Nachvollziehbarkeit und Dokumenta-
tion im KI-Lebenszyklus abzielen [14]. Dies betrifft etwa sicher-
heitsrelevante Anwendungen, in denen die Entscheidungsfindung
der KI erklarbar und kontrollierbar bleiben muss.

Ein Konzept, das zur strukturierten Umsetzung dieser Anfor-
derungen beitragen kann, ist die Verwendung von “Al-Cards”, wie
n [15] definiert. Diese standardisierten Artefakte erfassen zen-
trale Informationen zu Datenquellen, Modellverhalten, Anwen-
dungsgrenzen und Risiken und unterstiitzen dadurch sowohl die
interne Qualititssicherung als auch die externe Kommunikation
mit regulatorischen Stellen. Besonders in komplexen Produkti-
onsumgebungen wie CPPS tragen solche Ansitze dazu bei, den
verantwortungsvollen KI-Betrieb zu gewihrleisten.

2.4 Zusammenfassung der Anforderungen

In den Ausfithrungen oben wurden zentrale Anforderungen
und Perspektiven herausgearbeitet, die ein praxisnahes Prozess-
modell fiir KI-Anwendungen in der Produktion im CPPS-Kontext
beriicksichtigen muss. Cyber-physische Produktionssysteme stel-
len hohe technische System-Anforderungen, wie etwa an Echt-
zeitfihigkeit und Integration in hardwarenahe Infrastrukturen
(Kapitel 2.1). Gleichzeitig erfordert der KI-Lebenszyklus in der
industriellen Praxis eine strukturierte Iteration mit Monitoring,
Feedback und klar definierten Rollen (Kapitel 2.2). Hinzu kom-
men regulatorische Vorgaben, die Transparenz und dokumentier-
te Nachvollziehbarkeit Giber alle Phasen hinweg einfordern (Kapi-
tel 2.3).

Diese technischen, methodischen und regulatorischen Aspekte
bilden die Grundlage fiir die in Kapitel 3.1 folgende Analyse
bestehender Prozessmodelle. Ziel ist es, zu priifen, inwiefern vor-
handene Ansitze diesen Anforderungen gerecht werden und wo
Liicken bestehen, die eine Weiterentwicklung notwendig machen.

3 Ein strukturierter Prozessrahmen
fiir Kl in der Produktion

Um den komplexen Anforderungen an den KI-Lebenszyklus
im Kontext von CPPS gerecht zu werden, braucht es ein struktu-
riertes, anwendungsnahes Vorgehen. Der folgende Abschnitt in
Kapitel 3.1 analysiert,
diesen Anforderungen geniigen und bildet damit die Grundlage
fiir die Entwicklung eines eigenen, industrieorientierten Ansatzes

inwiefern bestehende Prozessmodelle

(Kapitel 3.2), der auf die Anforderungen und Grundlagen von
Kapitel 2 aufbaut. Abschliefend wird in Kapitel 3.3 die sich erge-
bende Praxisbedeutung des eigenen AIM4M-Prozessmodells dis-
kutiert.
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Tabelle. Bewertungskriterien, abgeleitet aus zentralen MLOps-Anforderungen fiir CPPS.

(K1) Verantwortlichkeiten und Akteure: Die relevanten Rollen und Verantwortlichkeiten sind fiir jeden Prozessschritt

aufgefiihrt.

(K2) Systematisches Engineering: Die Prozessschritte sind detailliert definiert und beschrieben, anstatt nur ein

Systematisches Lebenszyklus-Engineering

allgemeines oder generisches Modell darzustellen.

(K3) Umfassendes Lebenszyklusmanagement (LZM): Der Prozess bildet die gesamte Lebensdauer einer

KI-Anwendung ab, von der ersten Idee bis zur AuBBerbetriebnahme.

(K4) CPS/CPPS und Industrie 4.0 Kontext: Der Prozess integriert Spezifika aus dem CPPS-Kontext, zum Beispiel

Domanen-spezifische Anpassung

inkludiert die Integration und Systemtests mit Hardware-Komponenten.(K5) Live-Modellaktualisierungen: Der

Prozess ermdglicht eine kontinuierliche Optimierung mit Modelliterationen wahrend der Betriebsphase.

(K6) Einhaltung gesetzlicher Vorschriften: Anforderungen (Sicherheit, Erklarbarkeit usw.) sind adressiert und

werden iiber den gesamten Lebenszyklus hinweg verortet.

Regulatorische Anforderungen

(K7) Governance und Qualitatsbewertung: Herausforderungen sind adressiert und es werden entsprechenden
Anforderungen kontinuierlich aufgenommen und evaluiert.

3.1 Analyse bestehender Prozessmodelle

Zahlreiche Veroffentlichungen der letzten Jahre widmen sich
dem Lebenszyklus von KI-Systemen, sowohl im Kontext allgemei-
ner KI-Prozesse als auch mit Bezug zu MLOps. Ziel ist, zu unter-
suchen, inwieweit bestehende Prozessmodelle den zuvor beschrie-
benen Anforderungen an den industriellen KI-Betrieb, vor allem
im Umfeld von CPPS, gerecht werden.

Hierfiir wurde eine strukturierte Analyse bestehender Modelle
aus Forschung und Praxis durchgefithrt. Ausgangspunkt bildete
eine systematische Literaturanalyse gemifl Prisma-Methode, die
im Januar 2025 durchgefithrt wurde. Dazu wurden die Daten-
banken ,Web of Science” und ,Scopus “durchsucht, basierend auf
einem Suchstring, mit drei Komponenten durch ein ,AND* ver-
kniipft. Je Komponente waren dabei mehrere Alternativen durch
ein ,,OR“ verkniipft, um flexibel bei der konkreten Wortwahl zu
bleiben. Der Suchstring sollte gewihrleisten, dass nur Publikatio-
nen gefunden werden, welche sich im weiteren Sinne mit einem
Prozessmodell zum Thema MLOps im Kontext von CPPS be-
schiftigen. Die Suche fithrte zu insgesamt 243 Paper-Ergebnissen.
Diese wurden anschliefend mit der Prisma-Methode zu 11 rele-
vanten Ansitzen beziehungsweise Prozessmodellen reduziert
[5, 10, 12, 16—24], die ein vollstindiges Lebenszyklusmodell
adressieren. Diese Modelle wurden auf Basis vorab definierter
Bewertungskriterien verglichen, die aus den vorangegangenen
Kontextkapiteln (Kapitel 2.1 bis Kapitel 2.3) abgeleitet wurden.
Die Kriterien umfassen sieben zentrale Dimensionen von MLOps
und Industrie 4.0, die in der Tabelle zusammengefasst dargestellt
werden.

Anhand dieser Kriterien (K1-K7) wurden die 11 ausgewihl-
ten Prozessmodelle in einer Vergleichsmatrix gegeniibergestellt
(Bild 1).

Dabei wurde die Abdeckung der sieben definierten Bewer-
tungskriterien qualitativ mit ,,Harvey Balls“ auf einer dreistufigen
Skala dargestellt: vollstindig erfillt (voller Ball, Wert 100 %),
teilweise erfiillt (halber Ball, Wert 50 %) und nicht erfiillt (leerer
Ball, Wert 0%). Der Erfiillungs- beziehungsweise Uberdeckungs-
grad bezieht sich vor allem auf die qualitative Bewertung des Kri-
teriums, unter anderem, ob jeweils entsprechende Anforderungen
beriicksichtigt wurden oder in den Prozessmodellen iiber Key-
words erkenntlich sind. Zusitzlich wurde je Prozessmodell ein
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Bild 1 Bewertung der analysierten Prozessmodelle fiir Machine Learning
Operations (MLOps), anhand der Evaluationskriterien (aus der Tabelle).
Grafik: Fraunhofer IPA

Durchschnittswert berechnet, der den prozentualen Erfiillungs-
grad tiber alle Kriterien hinweg angibt. Das Ergebnis zeigt, dass
im Schnitt nur etwa die Hilfte der Kriterien erfiillt wird, mit Ein-
zelwerten zwischen 21 % und 64 %.

Die Auswertung zeigt die Unterschiede der Prozessmodelle in
Detailtiefe (zum Beispiel Rollen und systematisches Vorgehen),
Struktur und Anwendungsfokus. Wihrend die meisten Prozess-
modelle zentrale Evaluationsaspekte, wie das umfassende Lebens-
zyklusmanagement oder Governance- und Qualitdts-Anforderun-
gen, gut abdecken, fehlt hiufig die Anwendung systematischer
Konzepte fiir Rollen und Verantwortlichkeiten sowie detailliertes
Engineering. Aspekte wie regulatorische Anforderungen und be-
sonders die CPS/CPPS-Integration werden am seltensten und
meist nur am Rande adressiert.

Die Analyse macht deutlich: Es fehlt ein Prozessmodell, das die
Stirken bestehender Ansitze, wie rollenbasiertes Vorgehen zum
Engineering, kontinuierliche Feedback-Zyklen und standardisierte
Qualititsmethoden mit den besonderen Bedingungen der indus-
triellen Praxis, insbesondere im Umfeld cyber-physischer Syste-
me, ganzheitlich adressiert. Bestehende Ansitze liefern wichtige
Impulse, doch kein Ansatz vereint alle zentralen Anforderungen
in einer durchgingigen, praxisnahen Struktur. Diese Erkenntnis
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Bild 2 Strukturansicht des AIM4M (Al Asset Management for Manu-
facturing)-Prozessmodell als Ubersicht (iber die vier Hauptphasen und
elf Stufen. Die romischen Ziffern geben die Nummer der Stufe an.
Grafik: Fraunhofer IPA

bildet die Grundlage fiir die Entwicklung des eigenen Prozess-
modells AIM4M, das im Kapitel 3.2 vorgestellt wird.

3.2 Dzl\s AlIM4M-Prozessmodell
3.2.1 Uberblick

Auf Basis der in Kapitel 2 identifizierten Anforderungen und
Analyseergebnisse (Kapitel 3.1) wurde mit ATIM4M (Al Asset
Management for Manufacturing) ein Prozessmodell entwickelt,
das den vollstindigen Lebenszyklus von KI-Anwendungen in
industriellen Produktionssystemen strukturiert abbildet. Die Ent-
wicklung erfolgte iterativ und wurde kontinuierlich durch Erfah-
rungen aus Industrieprojekten flankiert, um ein betriebstaugliches
und anschlussfihiges Vorgehensmodell abzuleiten. Der Fokus lag
auf der praxisnahen Umsetzung im Kontext von CPPS, mit be-
sonderem Augenmerk auf die Betriebsphase, Qualititssicherung
und regulatorische Nachvollziehbarkeit. Details zur Entwick-
lungsmethodik sind in [6] dargestellt. Die vorliegende Arbeit
erweitert diese Fassung insbesondere um eine zweistufige Visuali-
sierung und Evaluierungsergebnisse der Studie (Kapitel 3.3)

Dazu ist das Prozessmodell in vier Hauptphasen unterteilt, die
den gesamten KI-Lebenszyklus umfassen: ,Ideation”, ,Develop-

«

ment”, ,Operation” und ,Retirement®, die sich grundsitzlich an
den typischen Phasen eines Produktlebenszyklus orientieren. Jede
Phase besteht aus mehreren Stufen (romische Nummerierung).
Diese Struktur erlaubt es, KI-Projekte systematisch und hier-
archisch strukturiert zu steuern: von der Anforderungsanalyse
und Ideenfindung bis zur kontrollierten Stilllegung. Bild 2 bietet
eine kompakte Ubersicht iiber das Prozessmodell und zeigt Pha-
sen, Stufen sowie deren Verlauf und mogliche Riickkopplungen
(Strukturansicht).

Die Stufen sind farblich an ihre iibergeordnete Phase gekop-
pelt und machen somit Abhingigkeiten sofort erkennbar: orange
sind Stufen mit explorativen Tatigkeiten (wie Ideenfindung und
konzeptionelles Design), blau sind Stufen mit Entwicklungstitig-
keiten (zu Daten, Modell, Anwendung), griin sind Stufen mit
Tatigkeiten rund um Betrieb und Monitoring, grau sind Geneh-
migungsstufen (Qualitatskritische Entscheidungen) und schwarz
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ist die finale Stufe der Auflerbetriebnahme. Die Abbildung zeigt
vor allem die logische Abfolge im Lebenszyklus. Pfeile im Modell
geben die Richtung der Bearbeitung an: durchgezogene Linien
stehen fiir sequenzielle Abldufe, wihrend gestrichelte Linien itera-
tive Zyklen und Riickkopplungspunkte verdeutlichen. Umfang
und Dauer einzelner Stufen kénnen erheblich variieren. Mafigeb-
lich ist dabei etwa die Erfahrung des Unternehmens in der
KI-Entwicklung und die Verfiigbarkeit technischer Hilfsmittel. So
kann die Stufe ,,Operation Onboarding” in einem Groflunterneh-
men lediglich bedeuten, eine neue KI-Anwendung in eine beste-
hende Plattform einzubinden, wihrend ein Unternehmen ohne
etablierte Infrastruktur dafiir mehrere Monate fiir Planung und
Bereitstellung einer betriebsfertigen Gesamtlosung einplanen
muss. Eine ausfithrliche Beschreibung der Phasen folgt im néchs-
ten Kapitel.

Die Strukturansicht dient als erster Uberblick iiber die hierar-
chische Struktur von Phasen und Stufen, um als Orientierungs-
rahmen die technischen, organisatorischen und regulatorischen
Aspekte systematisch miteinander zu verbinden. Somit ist diese
Darstellung als Einstiegspunkt in ein umfassendes KI-Lebens-
zyklusmanagement und zur Kommunikation auf héherer Flug-
ebene gedacht, zum Beispiel mit Entscheidungstragern.

3.2.2 Die Lebenszyklusphasen

Nachdem Bild 2 den Gesamtzusammenhang des AIM4M-Pro-
zessmodells als Strukturansicht visualisiert hat, richtet sich der
Fokus nun auf die einzelnen der vier Hauptphasen und dazugeho-
rigen Stufen dieses Lebenszyklus. Diese Phasen spiegeln typische
Projektverlidufe bei KI-Anwendungen wider und strukturieren
den Lebenszyklus in einer klar nachvollziehbaren Form, von der
ersten Idee bis hin zur Auflerbetriebnahme. Es folgt je Phase eine
kurze Beschreibung:

+ Phase I: Ideation Phase
Ziel der Ideation Phase (Stufen I bis IIT) ist die Initialisierung
und Validierung eines Use Cases. Dazu gehort zunéchst die
Analyse des Problems, das durch dieKI gelgst werden soll. An-
schliefend werden technische und regulatorische Anforderun-
gen abgeleitet. Die Use-Case-Idee wird schrittweise konkreti-
siert, auf Geschiftsnutzen, Stakeholder-Ziele und (technische)

Machbarkeit iiberpriift und freigegeben. Die Entscheidung zur

Weiterverfolgung der Idee und Freigabe entsprechender

Ressourcen zur Entwicklung erfolgt am Ende der Phase tiber

einen ersten Qualititspriifpunkt (QA-Gate).
+ Phase II: Development Phase

Die zweite Phase (Stufen TV bis VIT) tiberfiihrt den KI-Proto-

typen in eine einsatzfihige Losung. Dazu gehoren samtliche

Entwicklungsaufgaben — von Datenbeschaffung und -aufberei-

tung iiber Modelltraining bis hin zu systematischen Experi-
menten - um fiir das in der vorangegangenen Phase definierte

KI-Problem einen geeigneten Modellkandidaten zu finden.

Eine liickenlose Dokumentation und der Einsatz automatisier-

ter Pipelines sind dabei essenziell. Sobald ein Modellkandidat
vorliegt, wird er in eine Anwendung integriert: Das Spektrum
reicht von einer schlanken Programmierschnittstelle, iiber die
andere Systeme auf das Modell zugreifen, bis zur Entwicklung
kompletter Benutzeroberflichen oder sogar einer Smartphone-
App. Danach folgt das Onboarding, bei dem die Anwendung in
bestehende Delivery- und Monitoring-Plattformen eingebun-
den und fiir die Produktfreigabe vorbereitet wird. Diese Ab-
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Bild 3 Detaillierte Darstellung des AIM4M-Prozessmodells (Detailansicht), als Verfeinerung der Strukturansicht. Grafik: Fraunhofer IPA

nahme schliefit die Entwicklungsphase ab und bestitigt, dass
Datenpipelines, Modellversionen und Anwendungen reprodu-
zierbar dokumentiert, automatisiert getestet und freigegeben
sind.

Phase III: Operation Phase

Die Operation Phase (Stufen VIII bis X) umfasst den laufen-
den Betrieb der KI-Anwendung und stellt deren Stabilitit
sicher durch kontinuierliche Optimierung, Uberwachung und
eventuelle Deployment-Zyklen. Im Mittelpunkt stehen ein
liickenloses Monitoring von Anwendung und Infrastruktur, die
fortlaufende Performance-Bewertung sowie die systematische
Einbindung von Nutzerfeedback. Auf dieser Grundlage werden
erforderliche Anpassungen an Daten, Modellen oder Infra-
struktur gezielt geplant, dokumentiert und kontinuierlich
evaluiert. Simtliche Updates, ob an Modell, Datenpipeline oder
Software, durchlaufen einen klar definierten Freigabeschritt,
sodass nur gepriifte Anderungen in die Produktionsumgebung
gelangen und der reibungslose Betrieb dauerhaft gewihrleistet
bleibt.

Phase IV: Retirement Phase

Wird ein KI-System abgeldst oder der zugehorige Use Case
eingestellt, zum Beispiel weil definierte Anforderungen tiber
Zeit verletzt und nicht mehr durch Updates behoben werden
konnen, deckt AIM4M auch den strukturierten Riickbau oder
die Auferbetriebnahme und damit verbundene Aktivititen ab
(Stufe XI). Dabei wird die KI-Anwendung deaktiviert, Daten
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entweder archiviert oder geloscht (je nach Vorgaben aus der
Anforderungsdefinition, entsprechend des Anwendungskon-
text) und eine abschliefende Evaluierung zur Wissenssiche-
rung durchgefiihrt. Der dokumentierte Abschluss hilft,
Erfahrungen fiir zukiinftige Projekte nutzbar zu machen.
Mit dieser Gliederung in vier Hauptphasen spannt AIM4M den
Bogen von der ersten Idee bis zur Auerbetriebnahme. Jede Phase
verfolgt ein klar definiertes Ziel, endet mit einem gepriiften
Ubergabeschritt und schafft so Transparenz und Wiederholbar-
keit, auch im Sinne der Nachvollziehbarkeit und Verantwortlich-
keiten, wie sie etwa der EU-AI-Act fordert.

3.2.3 Modellergebnis und -verfeinerungen

Aufbauend auf der Strukturansicht (Bild 2) und der im vorhe-
rigen Kapitel vorgestellten Phasengliederung zeigt dieses Kapitel
das AIM4M-Prozessmodell in seiner vollstindigen Detailansicht,
visualisiert in Bild 3.

Im Vergleich zu bestehenden Prozessmodellen wurden bei der
Entwicklung des AIM4M mehrere zielgerichtete Verfeinerungen
und Erweiterungen vorgenommen, auf Basis der dargestellten
Anforderungen aus Anwendungskontext und Regulatorik:

1. Hardware-Perspektive fiir CPPS:
AIM4M beriicksichtigt die starke Kopplung von KI-Anwen-
dungen an produktionsnahe Hardware, wie sie fiir CPPS
typisch ist. Besonders bei Test und Integration des KI-Modells,
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bei Update-Prozessen und Monitoring werden die technischen

Rahmenbedingungen (wie Echtzeitverarbeitung, Steuerungs-

systeme) miteinbezogen. Relevante Tatigkeiten erstrecken sich

aber tiber den gesamten Lebenszyklus (siehe Magenta-Markie-
rungen an den Schritten im Prozessmodell), zum Beispiel die

Beriicksichtigung der Hardware-Anforderungen in I, oder Hy-

brid Testing in VI.

2. Betonte Betriebsphase mit vollstindigem Regelkreis:

Wihrend viele Lebenszyklus-Modelle die Entwicklung betonen,
stellt AIM4M auch die Betriebsphase detailliert dar. Diese um-
fasst neben dem Monitoring die kontinuierliche Re-Evaluation,

Optimierung sowie geregelte Updateprozesse zur Sicherung

der Qualitit und Konformitit zu anfangs definierten Anforde-

rungen.

3. Regulatorik und Nachvollziehbarkeit als feste Bestandteile:

Der Einsatz der Al-Cards (siehe Anforderungen in Kapitel 2.3)

als standardisierter Dokumentationsartefakte ermoglicht einen

strukturierten Umgang mit regulatorischen Anforderungen. So
wird Nachvollziehbarkeit im Betrieb methodisch verankert.

4. Rollenbasierte Strukturierung:

Das Modell definiert die notwendigen Rollen entlang des Le-

benszyklus (zum Beispiel Stakeholder, KI-Entwickler, Soft-

ware-Ingenieur) und ordnet ihnen konkrete Aufgaben und

Schnittstellen zu. Somit entstehen klare Verantwortlichkeiten,

auch tiber Team- oder Abteilungsgrenzen hinweg. Durch die

Spezialisierung eines generischen MLOps-Rahmens fiir den

industriellen Einsatz in der Fertigung erweitert AIM4M die in

der Literatur bekannten Rollenmodelle fiir KI-Lebenszyklen

(siehe [5, 1 1]) um vier zusitzliche, in Magenta markierte

Rollen (wie in Kapitel 2.2 eingefiihrt): der Qualitatssicherung,

dem Hardware-, Infrastruktur- und Service-Ingenieur.

5. Stufenbasierter Aufbau fiir Wiederverwendung und Skalierung:
Durch die Aufteilung in Phasen, Stages (Stufen) und Prozess-
schritte (Steps) konnen Use Cases in verschiedenen Reifegra-
den durchlaufen oder modular angepasst werden. Dies erlaubt
eine schrittweise Skalierung und Wiederverwendbarkeit. Damit
ist das Prozessmodell nicht nur relevant fiir Unternehmen, die
schon mehrere KI-Anwendungen entwickelt und entsprechen-
des Knowhow aufgebaut haben, sondern besonders auch fiir
Unternehmen, welche erst am Anfang einer solchen Initiative
stehen.

Die zielgerichteten Erweiterungen zeigt die Detailansicht (Bild 3)

und behilt dabei die vertraute Farblogik bei: Orange kennzeich-

net die experimentellen Stufen (I-1I), blau die Entwicklungs-
stufen (IV, V, und IX), griin die Betriebsstufen (VI, VHI), grau
die formalen Genehmigungsschritte (11T, VII, X) und schwarz die

Auflerbetriebnahme (XI). Jede (rémisch nummerierte) Stufe ist

als Kasten mit Titel, arabisch nummerierten Schritten und den

dafiir verantwortlichen Rollen dargestellt (links ,L” = Lead, rechts

,C” = Contributor). Die Rollenkiirzel erliutert die Legende am

unteren Rand (etwa KiE = KI-Entwickler).

Insgesamt veranschaulicht die Detailansicht (Bild 3), wie das
AIM4M-Prozessmodel neben der groben Strukturansicht des KI-
Lebenszyklus (Bild 2) auch einen klar abgestimmten Arbeitsplan
bietet. Dieser verortet definierte Verantwortlichkeiten, Qualitits-
priifpunkte mit Dokumentationslogik und nachvollziehbare Arte-
fakte und orientiert sich konsequent an der Farb- und Phasen-
logik der Strukturansicht.
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3.3 Von derTheorie zur Blaupause:
Erste Einblicke aus der Praxis

Das AIM4M-Prozessmodell stellt einen praxisnahen Orientie-
rungsrahmen bereit, der MLOps-Prinzipien auf die besonderen
Bedingungen im Kontext von CPPS iibertrigt. Ein zentrales Ziel
bei dessen Entwicklung war nicht nur ein theoretisch fundiertes
Prozessmodell, sondern auch eine konkrete Orientierungshilfe fiir
die Praxis zu schaffen. Dafiir wurde das Prozessmodell so gestal-
tet, dass es vielseitig anwendbar (zum Beispiel fiir Anbieter sowie
Anwender von KI-Losungen), leicht vermittelbar (fir unter-
schiedlichste Reifegrade an KI-Erfahrungen bei Unternehmen)
und auf unterschiedliche KI-Use-Cases iibertragbar ist (von klas-
sischer KI, tiber KI-Bildverarbeitung und Sprachmodelle).

Um die Praxistauglichkeit des Prozessmodells schrittweise zu
beleuchten, werden momentan zwei Ansitze verfolgt: Zum einen
kommt AIM4M bereits in ersten Pilot-Beratungsprojekten bei
Kunden zum Einsatz; zum anderen l4uft parallel eine qualitative
Studie, die auch ohne unmittelbare Anwendung des Prozess-
modells zeitnah erste Praxiseindriicke liefert. Bisher wurde das
16 Industrie-Expertinnen und -Experten
diskutiert und zeigt so einen ersten Realitdtsabgleich sowie Nut-
zenpotenziale auf. Im Folgenden wird eine Auswahl der bisheri-

Prozessmodell mit

gen Ergebnisse vorgestellt.
3.3.1 Studienaufbau

Die Studie liefert eine erste Einschitzung, wie praktikabel und
vollstindig AIM4M aus Anwendersicht im industriellen Kontext
ist. Dafiir wurden (im Zeitraum April bis Mai 2025) 16 Exper-
tinnen und Experten aus 16 deutschsprachigen Unternehmen
befragt. Die Stichprobe deckt zentrale Rollen des Prozessmodells
ab: von strategischer Ebene (Stakeholder) bis in ausfiihrende Rol-
len (KI—EntWickler, Qualititspriifer etc.).

Die Datenerhebung erfolgte durch strukturierte Einzelinter-
views (circa 60 Minuten) mit teilweise offenen und teilweise
geschlossenen Fragen zur Ist-Situation, dem Prozessmodell und
Chancen fiir eine unterstiitzende Softwarelosung. Im Interview
wurde das AIM4M-Prozessmodell in den zwei Detailebenen
(Bild 2 und Bild 3) vorgestellt und diskutiert. Bei geschlossenen
Fragen wurde dabei eine Likert-skalierte Skala mit den Antwort-
moglichkeiten ,trifft nicht zu ,trifft eher nicht zu ,neutral®
Htrifft eher zu“ und ,trifft voll zu“ genutzt.

3.3.2 Einblicke in die Ergebnisse

Einen Einblick in die Ergebnisse und Riickmeldungen aus der
Studie mit 16 Teilnehmenden zur Verstindlichkeit und Vollstin-
digkeit von AIM4M gibt die Darstellung in Bild 4.

Bei den Bewertungen (links) sind neben der Likert-skalierten
Skala auch Zwischenschritte von 3,5 beziehungsweise 4,5 angege-
ben. Diese resultieren daraus, dass einige Teilnehmenden ihre Be-
wertung als Mittelwert zweier Blickwinkel angaben, zum Beispiel
bei Rollenwahrnehmung im eigenen Unternehmen einerseits und
des allgemeinen Verstindnisses des im Prozessmodell definierten
Rollenbilds andererseits.

Die Riickmeldungen zeigen ein eindeutiges Bild: Konzeptionell
iiberzeugt das Modell, insbesondere durch die klare Struktur und
Lebenszyklusorientierung. Bereits der Ersteindruck des AIM4M-
Prozessmodells wurde durchweg positiv bewertet: Alle Teilneh-
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Grafik: Fraunhofer IPA

menden stuften die Strukturansicht (Bild 2) zur Ubersicht als
gut bis sehr gut verstindlich ein (siehe »Ersteindruck®, Iinks).
Zudem konnten sich fast alle Teilnehmenden unmittelbar im Le-
benszyklus verorten, obwohl die konkrete Zuordnung zu Rollen
im Uberblick noch nicht explizit dargestellt ist. Mit der nachge-
schalteten Detailansicht (Bild 3) gelang die Rollenzuordnung
vollstandig (siehe ,Zustimmung®, rechts). Gleichzeitig wurde
mehrfach betont, dass in der Praxis eine Person oft mehrere der
definierten Rollen gleichzeitig tibernimmt. Dieses Spannungsfeld
zwischen idealtypischem Rollenmodell und realer Ressourcenlage
zieht sich durch viele Riickmeldungen.

Was die Vollstindigkeit des Prozessmodells zum Arbeits-
umfang der Rollen betrifft, fiihlten sich nahezu alle Befragten in
ihrem Arbeitsalltag vom Modell gut abgedeckt. Die Einschitzun-
gen reichten iiberwiegend von ,trifft zu“ bis ,trifft voll zu“ (siehe.
»Arbeitsumfang®). Nur in Einzelfillen wurde geringer positiv
geurteilt, weil Rollen in der Praxis zusammenfallen und sich
damit der Arbeitsumfang verteilt oder einzelne unternehmens-
spezifische Arbeitsinhalte nicht explizit verortet sind. Insgesamt
wird das Modell jedoch als realititsnah wahrgenommen.

Weniger eindeutig fiel das Urteil zur praktischen Umsetzbar-
keit im eigenen Unternehmen aus (siehe ,,Umsetzbarkeit“). Wih-
rend einige Teilnehmende die direkte Umsetzung von Vorgaben
aus dem Prozessmodell in ihrem Unternehmen mit ,gut machbar®
(Bewertung 4-5) einschitzten, weil Rollenklarheit, Budget und
Tool-Landschaft bereits weitgehend vorhanden seien, stuften an-
dere die Umsetzung nur als ,teilweise machbar ein. Sie verwie-
sen vor allem auf fehlende Fachkrifte, mangelndes strategisches
Commitment, unscharfe Rollengrenzen und knappe Ressourcen,
die eine Eins-zu-eins-Umsetzung derzeit im Mittelstandsumfeld
erschweren. Das Prozessmodell kann aber selbst in solchen Situa-
tionen dank seiner klaren Strukturansicht helfen, die Grundprin-
zipien von systematischem KI-Lebenszyklusmanagement zu erfas-
sen und als Blaupause die Weiterentwicklung anzustoflen. Man
kann also sagen: Das Prozessmodell ist praxistauglich, sofern die
Organisation die notwendige Reife mitbringt, um es zu tragen.

Besonders hohe Zustimmung erhielt die integrierte Dokumen-
tationslogik in Form der AI-Cards, die als Steckbriefe simtliche
Informationen zu Use Cases, Daten, Modellen und Deployments
biindeln und damit Compliance sowie Nachvollziehbarkeit ver-
bessern (siehe ,,Dokumentation“). Teilnehmende aus Qualitits-
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und Regulatorikrollen hoben dieses Vorgehen als zentralen Mehr-
wert hervor, auch wenn endgiiltige rechtliche Vorgaben, wie etwa
aus dem EU-AI-Act, derzeit noch nicht feststehen. Daraus folgt,
dass die konkreten regulatorischen Anforderungen im Prozess-
modell (etwa in den Anforderungslisten im Schritt ,Requirements
Analysis“) fortlaufend an den aktuellen Stand von Normen und
Gesetzen angepasst werden miissen. AIM4M liefert dazu den
strukturellen Rahmen.

Auch aus den offen-gestellten Fragen im Interview ldsst sich
zusammenfassend ableiten, dass ein klar strukturiertes Prozess-
modell fiir KI-Anwendungen, wie AIM4M, erhebliches Potenzial
bietet: Ob Digitalisierungsberater oder Experte fiir Daten, Prozes-
se und Regulatorik, die Probleme sind deckungsgleich. Ein pra-
xisnahes, rollenbasiertes Prozessmodell fiir KI im CPPS-Kontext
mit integrierter Dokumentation adressiert exakt jene Liicken, die
heute Zeit, Geld und Vertrauen kosten. Es schafft Transparenz
iiber Rollen, verankert regulatorische Priifpunkte mit Quality
Gates und verortet Dokumentationspflichten. Damit erleichtert es
die Zusammenarbeit in interdiszipliniren Teams und verbessert
die Compliance. Das wird von allen Befragten als klarer Mehr-
wert bewertet. Verbesserungswiirdig sind vor allem die pragmati-
sche Anpassung an knappe Ressourcen in der Praxis (Rollen in
Personalunion) sowie eine Verzahnung mit bestehenden Soft-
warelgsungen, damit sich der Modellablauf im Alltag tatsichlich
»leben® lisst.

4 Fazit und Ausblick

AIMA4M ist ein praxisnahes Prozessmodell, das den gesamten
Lebenszyklus von KI-Anwendungen im Kontext der industriellen
Produktion abbildet, von der ersten Idee tiber Entwicklung und
Betrieb bis zur strukturierten Stilllegung. Im Zentrum steht die
Operationalisierung, die hiufig als methodische Liicke fiir KI im
Produktionsumfeld identifiziert wird. Um diese Hiirde zu tiber-
winden, verkniipft das AIM4M-Prozessmodell MLOps-Prinzipien
mit CPPS-spezifischen Rollen, Aktivititen und Compliance-Arte-
fakten (zum Beispiel Al-Cards) in einer anwendungsorientierten
Struktur. Durch die hierarchische Gliederung in Phasen, Stufen
und Schritte eignet sich AIM4M nicht nur fiir Einzelprojekte,
sondern auch als organisationsweiter Orientierungsrahmen. Erste
Praxiserfahrungen und Expertenriickmeldungen zeigen, dass das
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Modell Verstindnis schafft, Rollen schirft und die Wiederver-
wendbarkeit von Losungen fordert.

Zukiinftig kann von AIM4M als Basis fiir die Harmonisierung
von unternehmensinternen Prozessen mit Standardvorgehen des
EU-AI-Act Gebrauch gemacht werden, etwa als Vorlage fiir digi-
tale Dokumentations-Templates oder automatisierte QA-Gates.
Anhand in der Studie gewonnenen Erkenntnisse soll zudem der
Aspekt einer Tool-Unterstiitzung gezielt weiterentwickelt werden,
damit Unternehmen praxisgerechte Unterstiitzung erhalten und
eine Uberfithrung von AIM4M aus der Prozessebene in den ge-
lebten Alltag ermoglicht wird.
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