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Bei diesem Beitrag handelt es sich um einen wissenschaftlich 
begutachteten und freigegebenen Fachaufsatz („reviewed paper“).

Applying computer vision and behavior trees to robotics

Status recognition  
for collaborative robotics

D. Kötter, F. Nolte, O. Petrovic, C. Brecher

A B ST R A C T  Collaborative robotics tries to combine the 
strengths of humans and robots. This article discusses incor-
porating object detection into a behavior tree (BT), a common 
hierarchical control structure in robotics. This integration 
 allows robots to  verify assembly status and provide feedback 
to workers during tasks such as gear assembly. Also, a pipe-
line for creating synthetic training datasets from real parts  
is introduced, demonstrating effective status recognition and 
feedback mechanisms.

Statuserkennung in der kollaborativen 
 Robotik - Anwendung von Computer Vision 
und Behavior Trees in der Robotik

Z U S A M M E N FA S S U N G  Die kollaborative Robotik 
 versucht, die Stärken von Menschen und Robotern zu 
 kombinieren. In diesem Beitrag geht es um die Integration  
der  Objekterkennung in einen Behavior Tree (BT), eine in  
der  Robotik übliche hierarchische Kontrollstruktur. Diese 
 Integration ermöglicht es Robotern, den Montagestatus zu 
überprüfen und den Arbeitern bei Aufgaben wie der Getriebe-
montage Feedback zu geben. Darüber hinaus wird eine Pipe-
line zur Erstellung synthetischer Trainingsdatensätze aus 
 realen Teilen vorgestellt, die eine effektive Statuserkennung 
und Feedbackmechanismen demonstriert.

1 Introduction

Recent trends in globalization have increased competitive 
pressure [1]. Moreover, consumers demand products that can be 
customized to their specific needs [2]. The assembly process, as 
the last step in production, is particularly affected by fluctuations 
in demand due to its market proximity. To master these challen-
ges, processes need to be optimized with a view to efficiency and 
agility. Automating previously manual processes by machines or 
robots reduces labor costs and ensures a high level of quality [3]. 
Unlike assembly machines, robots are characterized by increased 
flexibility and lower investment costs. Robots can take on simple 
assembly tasks, which are repetitive or physically strenuous for 
human workers [4–6]. However, some tasks still require high-
 level reasoning and dexterity, which only humans can provide. 
Human-robot collaboration (HRC) aims to combine the 
strengths of automated and manual assembly. Expert knowledge 
in automation is needed to plan collaborative assembly processes. 
An expert must program the robots and ensure safe collaboration 
with humans. Most small and medium-sized businesses (SMB) 
lack this expertise. Simplifying the planning process makes the 
advantages of automation accessible to SMB, strengthening their 
resilience towards global competition. 

A promising approach is to use behavior trees (BTs) as a high-
level control structure for controlling robots [7]. BTs organize 
the behavior of a system in a hierarchical tree structure consisting 
of internal control flow nodes and leaves. BTs are modular since 
nodes can be easily added or removed. Condition nodes check if 
a specific condition is met before an action node is executed, 
which leads to the reactivity of the trees. BTs can be extended to 
distributing subtasks between humans and robots, or to automa-
tically determining an optimum of order subtasks. Also, BTs are 
intuitive and human-understandable, and can therefore be used 
by non-experts. [8]

To optimize human-robot collaboration, this paper extends a 
BT by a node for a status recognition system (SRS) to recognize 
the assembly process, using convolutional neural networks. This 
node recognizes the actual status of the assembly process (e.g., 
“fastening screws”, “assembly shaft”), controls the robot depen-
ding on status, and, accordingly, allows the robot to work more 
independently. A dataset consisting of assembly parts is created to 
train the SRS.

The paper is structured as follows. Chapter 2 gives an over-
view on state-of-the-art approaches towards SRS for collaborative 
robotics. Chapter 3 presents the system design of status recogni-
tion embedded in BTs. Chapter 4 evaluates the status recognition 

S T I C H W Ö R T E R

Kollaborative Robotik, Statuserkennung, Montage

doi.org/10.37544/1436-4980-2025-07-08-102

K E Y W O R D S

Collaborative Robotics, status recognition, assembly

https://doi.org/10.37544/1436-4980-2025-07-08-102 - am 03.02.2026, 03:16:33. https://www.inlibra.com/de/agb - Open Access - 

https://doi.org/10.37544/1436-4980-2025-07-08-102
https://www.inlibra.com/de/agb
https://creativecommons.org/licenses/by/4.0/


633

   D I G I T A L I S I E R U N G

WT WERKSTATTSTECHNIK BD. 115 (2025) NR. 07-08

system and discusses the results. Chapter 5 provides a summary 
and outlook for future lines of investigation.

2 Related work

There is a range of different SRS varying with respect to the 
model used for detecting the assembled parts (and the kind of 
parts) as well as the hands of the worker, and also whether  
a  dedicated dataset was created for the specific use case. [9] apply 
a YOLOv5 algorithm to create a status recognition system that 
can be applied to mold assembly. They decompose the assembly 
process into tasks and sub-tasks and define the actions to repre-
sent the status of sub-tasks. [10] propose a method for recogni-
zing and segmenting assembly tasks into individual motions. 
They use a motion capture system with pose estimation to collect 
time- series motion data and an object detector to identify grasped 
parts and tools. The assembly motion is then segmented based on 
changes in the manipulated object and hand velocity, using Hid-
den Markov Models to recognize these segmented motions. 

[11] introduces a lightweight gesture recognition model based 
on YOLOv3 and DarkNet-53. It is designed for people with 
 disabilities to enable them to communicate more easily. The 
 model does not require extra preprocessing steps and achieves 
high accuracy, even with complex environments and low-resoluti-
on images. [12] explores the Kinect v2 for industrial cobot 
 control via gestures and voice commands. This software separates 
robot movement and communication into two independent 
 threads, preventing interference. [13] develops a method using 
deep learning and object matching to detect missing and incor-
rect parts. The method uses an improved YOLOv3 network with 
smaller target detection scale and attention module, optimizing 
the prior anchor box size using the K-means++ algorithm. By 
matching 2D detection boxes with a standard assembly template, 
the method accurately locates assembly parts and identifies mis-
sing or wrong components, as validated by tests with the model. 

[14] proposes a gesture-based human-robot interface frame-
work where a robot assists a human coworker by delivering tools 
or parts and holding objects, utilizing wearable sensors to capture 
upper body gestures, which then are classified using an artificial 

neural network. The system uses a parameterized robotic task 
manager where coworkers use gestures to select or validate robot 
options based on speech and visual feedback, demonstrating effi-
ciency in assembly operations. The Table below summarizes the 
approaches towards an SRS in collaborative robotics. 

Since none of the approaches focuses on the reusability of the 
proposed system, this work utilizes behavior trees to ensure an 
easy integration and adaptation of the proposed SRS into diffe-
rent robotic control systems. Without the underlying control 
 architecture being reusable, a lot of manual effort is required to 
integrate the approach into existing systems. Furthermore, the 
SRS should be able to recognize different parts of the process and 
provide feedback to workers in case the wrong part is moved into 
the workspace of the cobot.

3 Status recognition system design
3.1 Object detection

To detect different parts from a gear in the cobot‘s workspace, 
two IntelReal Sense D435i [15] cameras are used alongside the 
YOLOv8s model for object detection (see Figure 1). 

Since synthetic gear data are not available, we use Polycam 
[16] to capture the 3D model of the object. Blender [17] is used 
to face fill, and Isaac Sim [18] to create and annotate a dataset of 
100 images with bounding boxes for each part of the gear, which 
totals 4400 images. The algorithm is trained and evaluated with 
an 80/20 split and reaches a mean average precision of 91.82 % 
at around 2.2 frames per second, running on an AMD Radeon 
RX Vega10 graphics card. The two cameras publish their image 
stream to the respective topic /cam_1 and /cam_2, which are 
 subscribed by the detection nodes 1 and 2, each running the 
 trained YOLO algorithm, publishing the results to /YoloCoords_1 
and /YoloCoords_2. The results are merged and published to the 
/AssemblyStatus.

3.2 Behavior tree

Figure 2 shows the BT for the SRS. Trinh et al [19] provide 
more information about the safety subtree. 

Table. Approaches towards a status recognition system in collaborative robotics.

Source

[9]

[10]

[11]

[12]

[13]

[14]

Model

YOLOv5

YOLOv3, Open Pose

YOLOv3

Kinect V2

YOLOv3

ANN, LSTM

Hands

No

Yes

Yes

Yes

No

Yes

Parts

Yes

Yes

No

No

Yes

No

Dataset

Yes

Yes

Yes

No

No

Yes

Summary

Status recognition of a mold assembly by detecting parts, tools and actions

Using Markov chains to recognize the assembly motion corresponding  
to a specific action

Classification of different hand gestures

Robot control by means of gestures and voice commands

Object matching of assembly parts on a base plate

Gesture-based human-robot interaction in manufacturing

Fig. 1. Pipeline for detecting different parts of a gear in the real world. Source: WZL, RWTH Aachen
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If the safety subtree detects that the distance between human 
and robot is bigger than a given threshold, the status recognition 
subtree is ticked. Herein, both camera-streams are evaluated to 
detect parts of the gear, and the results are written on the black-
board as /YoloCoords_1 and /YoloCoords_2. Then, the BT checks if 
the assembly is in a certain state, triggering the respective cobot 
action associated with the state. If the worker moves the wrong 
part of the gear into the workspace of the cobot (e.g., the worker 
moves the cover into the workspace, although the assembly requi-
res the circuit board as next part), the system provides feedback 
to the worker, via monitor, that a wrong part has been moved 
 into the workspace. Additionally, the system gives feedback on 
which part it expects instead of the wrong part (see Figure 3).

4 Evaluation

Figure 3 shows the image stream of one of the cameras and 
the feedback from the SRS to the worker. 

The camera is mounted 400 mm above the table that is used 
for assembling. As a use case for assembly, a gear for an electric 
bicycle is taken. Assembling the gear requires ten different steps:
1. Positioning the base frame
2. Positioning the gears
3. Pressing on the metal cover
4. Overlaying the rubber cover
5. Inserting the circuit board
6. Inserting bolts
7. Tightening bolts
8. Placing the cover
9. Inserting bolts
10. Tightening bolts

Except for the process steps of tightening bolts (as the camera‘s 
bird’s-eye view does not allow for recognizing if the bolts are 
tightened or not – which would even be impossible for humans 
from that position), the system is able to update the assembly 
 status, from the initial step of positioning the base frame to the 
last step, i. e., inserting the bolts.

If a wrong part is moved into the cobot‘s workspace, the 
 system gives feedback via a monitor to the worker and shows 
what part the system expects instead of the given part. If the right 
part is moved into the workspace, the status of the assembly 
 updates by +1 (see Figure 3). Using an AMD Radeon RX Vega10 
graphics card, the frame rate of the evaluated images is 
0.45 frames per second. 

5 Conclusion

This paper develops a status recognition system for collabora-
tive assembly processes. As a use case, a gear from Bosch is 
 assembled. Polycam, alongside Blender and Isaac Sim, is used for 
creating a dataset to train the YOLOv8s object detection algo-
rithm. The detection model is embedded in the BT of the cobot, 
enhancing the reusability of the proposed system. The evaluation 
shows that the logic of the SRS within the BT works well. Never-
theless, the respective cobot actions need to be implemented to 
deploy the system in the industry.

In the future, the authors want to program the respective 
 cobot action. Furthermore, they plan to focus on detecting  
the  assembled part instead of single parts. Additionally, they want 
to evaluate the  proposed system with different cobots to demons-
trate that the proposed system can be generalized. Furthermore, 

Fig. 2. Behavior Tree with integrated status recognition system (shown in red). Source: WZL, RWTH Aachen
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the evaluation should be carried out with a more powerful gra-
phics card, improving the number of evaluated frames per second.
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Fig. 3. Evaluation of the status recognition system. Source: WZL, RWTH Aachen
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