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Bei diesem Beitrag handelt es sich um einen wissenschaftlich 
begutachteten und freigegebenen Fachaufsatz („reviewed paper“).

Computer Vision-gestützte Montageanleitung: systematisches Design

YOLO-unterstützte Echtzeit-
Montageassistenz

J. Liang, A. Moriz, A. Göppert, R. H. Schmitt

Z U S A M M E N FA S S U N G  Die Arbeit präsentiert das 
 systematische Design eines Computer Vision-gestützten 
 Montageanleitungssystems, das YOLO-basierte Objekterken-
nung mit metadatenbasierten Anleitungsmodellen integriert. 
Der  Lösungsansatz liefert Mitarbeitern kontextspezifische 
 Arbeitsanleitungen in Echtzeit, reduziert die kognitive Belas-
tung und verbessert gleichzeitig die Genauigkeit der Aufgaben-
ausführung. Das Konzept bildet die Grundlage für adaptive 
 Assistenzsysteme in dynamischen Montageumgebungen. 

Computer Vision-aided Assembly 
 Instruction: Systematic Design

A B ST R A C T  This paper presents a systematic design  
of a computer vision-aided assembly instruction system that 
integrates YOLO-based object recognition with metadata-
 based  instruction models. The approach delivers real-time  
and context-specific work instruction to workers, reducing 
 cognitive workload while improving task execution accuracy. 
The concept establishes a foundation for adaptive assistance 
systems in dynamic assembly environments.

1 Ausgangssituation 

Trotz des heutigen hohen Automatisierungsgrades in Ferti-
gungsprozessen werden zahlreiche Aufgaben, darunter Wartungs-, 
Reparatur-, Montage- oder Einrichtungsarbeiten, manuell aus -
geführt [1]. Unter diesen Tätigkeiten sind insbesondere Montage-
prozesse in hohem Maße von der Fähigkeit der Mitarbeiter ab-
hängig, komplexe Anleitungen genau zu interpretieren und auszu-
führen. Eine zentrale Herausforderung ergibt sich aus der kogni-
tiven Belastung, die durch herkömmliche textbasierte oder sche-
matische Arbeitsanleitungen entsteht [2]. Die Mitarbeiter müssen 
kontinuierlich relevante Details aus langen und oft allgemeinen 
Beschreibungen herausfiltern, die Anleitungen mental auf die 
physische Arbeitsumgebung übertragen und sie während der Aus-
führung präziser Montagevorgänge im Gedächtnis behalten. Dies 
führt zu einer hohen kognitiven Belastung, die durch Informati-
onsüberflutung, Gedächtnisbelastung und häufiges Wechseln zwi-
schen Lesen und Handeln gekennzeichnet ist. 

Die Herausforderung wird in Umgebungen mit hoher Pro-
duktvariabilität und steigenden Anforderungen an die Individuali-
sierung noch verstärkt, wo die Anleitungen immer komplexer 
werden und sich in mehrere Varianten verzweigen. Daher sind 
Montagearbeiter einem erhöhten Risiko von Fehlinterpretationen 
und Fehlern, verminderter Effizienz und langsameren Lernkurven 
ausgesetzt [3]. Diese Probleme verdeutlichen eine grundlegende 
Einschränkung traditioneller Anleitungsformate: Diese Formate 
bieten zwar eine umfassende Dokumentation, unterstützen jedoch 
nicht den Bedarf der Mitarbeiter an kontextspezifischen, mühe -
losen Anleitungen während der Ausführung der Aufgaben [4]. Im 
Allgemeinen verwenden viele produzierende Unternehmen 

 immer noch Dokumente, die auf dem traditionellen Format basie-
ren. Auch wenn einige Unternehmen behaupten, dass die Bereit-
stellung von Arbeitsanleitungen in digitaler PDF-Form ebenfalls 
als Digitalisierung betrachtet werden kann, ist das PDF-Format 
nach wie vor für den Ausdruck oder die Anzeige auf dem Bild-
schirm eines elektronischen Geräts konzipiert. Dieser Art der 
„Digitalisierung” mangelt es an Flexibilität und Anpassungsfähig-
keit. Wenn sich einzelne Komponenten in den Anleitungen 
 ändern, beispielsweise wenn ein Bild ersetzt oder einzelne Para-
meter angepasst werden müssen, muss das gesamte Dokument 
durch eine aktualisierte Version ersetzt werden. Neben dem 
 unverhältnismäßig hohen Zeitaufwand erfordert die Erstellung 
 einer aktualisierten Version auch Ressourcen und Fachwissen von 
erfahrenen Mitarbeitern, um das Know-how in den Anleitungen 
darzustellen. 

Um die Qualität, Genauigkeit und Effizienz der Aufgaben in 
modernen Montagesystemen zu gewährleisten, ist es daher not-
wendig, die mit der Verwendung von Anleitungen verbundene 
kognitive Arbeitsbelastung zu reduzieren. Es sind Forschungs -
arbeiten erforderlich, um systematische Ansätze zu identifizieren, 
die den Mitarbeitern die richtigen Informationen zur richtigen 
Zeit und im richtigen Format zur Verfügung stellen, wodurch der 
mentale Aufwand verringert, und eine nachhaltig hohe Leistungs-
qualität ermöglicht wird.

2 Zielsetzung 

Die Zielsetzung dieser Arbeit ist es, ein Computer Vision-
 gestütztes Montageanleitungssystem zu entwickeln und zu evalu-
ieren, das die kognitive Arbeitsbelastung bei der manuellen Mon-
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tage reduziert, indem es den Mitarbeitern kontextspezifische und 
genaue Anleitungen gibt. Das Anleitungssystem soll in die Lage 
sein, dieselbe Arbeitsumgebung wie der Mitarbeiter wahrzu -
nehmen, indem es mithilfe von Computer Vision Bauteile, Werk-
zeuge und Montagezustände in Echtzeit erkennt. Durch die Über-
brückung der Lücke zwischen Erkennung und Anleitung kann 
das System automatisch den relevanten Prozessschritt bestimmen 
und dem Mitarbeiter eine genau auf die aktuelle Situation zuge-
schnittene Anleitung geben. 

Das gezielte System befasst sich mit zwei zentralen Herausfor-
derungen – kognitive Arbeitsbelastung und dynamische Montage-
bedingungen. Das erste Ziel des Systems besteht darin, die kogni-
tive Arbeitsbelastung zu reduzieren, indem es den Mitarbeitern 
die Notwendigkeit nimmt, Montageanleitungen manuell zu 
durchsuchen, anwendbare Varianten zu identifizieren und wichti-
ge Details während der Ausführung der Aufgabe im Gedächtnis 
zu behalten. Stattdessen werden die erforderlichen Informationen 
in einem kontextbezogenen und sofort zugänglichen Format dar-
gestellt, das direkt auf die Teile und Aktionen abgestimmt ist, die 
im Sichtfeld des Mitarbeiters sichtbar sind. Zweitens zielt das 
System darauf ab, die Genauigkeit und Effizienz der Aufgaben zu 
gewährleisten, indem es sicherstellt, dass die Anleitungen nicht 
nur genau sind, sondern sich auch dynamisch an unterschiedliche 
Montagebedingungen anpassen. Dies ist besonders relevant in 
Umgebungen, die durch Produktvielfalt, individuelle Anpassungen 
und häufige Prozessänderungen gekennzeichnet sind, in denen 
statische Anleitungen oft keine ausreichende Unterstützung bie-
ten.

Um diese Ziele zu erreichen, werden in diesem Beitrag struk-
turierte Anleitungsmodelle verwendet, die Montageschritte, Teile, 
Werkzeuge und Prozessspezifikationen explizit miteinander 
 verknüpfen. Diese Modelle bilden die Grundlage des adaptiven 
Anleitsystems und ermöglichen es, die Ergebnisse der Computer 
Vision-Erkennung systematisch den entsprechenden Anleitungen 

zuzuordnen. Die Integration von Erkennung und Anleitung 
schafft somit einen Regelkreis, in dem das System seine Ausgabe 
kontinuierlich an den Echtzeitkontext des Mitarbeiters anpasst. 
Dadurch werden die Anleitungen nicht nur konkreter, sondern 
auch intuitiver, was den mentalen Aufwand verringert, der erfor-
derlich ist, um die Lücke zwischen abstrakten Informationen und 
spezifische Handlungen zu schließen.

Im Allgemeinen wird eine systematische Grundlage für eine 
adaptive und Mitarbeiterorientierte Anleitungserteilung bei der 
manuellen Montage angestrebt. Durch die Einbettung von Kon-
textbewusstsein in Anleitungssysteme leistet dieser Arbeit einen 
Beitrag zu einer neuen Generation von Assistenztechnologien, die 
direkt auf die kognitiven Herausforderungen menschlicher Mitar-
beiter eingehen. Solche Systeme können die Ausführung von Auf-
gaben in Bezug auf Geschwindigkeit und Genauigkeit erheblich 
verbessern und gleichzeitig zum Wohlbefinden der Mitarbeiter 
beitragen, indem sie unnötige kognitive Belastungen verringern. 

3 Stand der Technik 

In diesem Abschnitt wird die aktuelle Entwicklung der rele-
vanten Technologien diskutiert, wobei der Schwerpunkt auf 
Computer Vision (cf. Abschnitt 3.1) und Datenmodellierung für 
kontextspezifische Arbeitsanleitung (cf. Abschnitt 3.2) liegt. 
Durch die Analyse des Stands der Technik können der For-
schungsbedarf ermittelt und die Entwicklungsrichtung festgelegt 
werden (cf. Abschnitt 3.3).

3.1 Computer Vision in der Produktion

In den letzten Jahren hat sich Computer Vision (CV) zu einer 
zentralen Technologie in der Produktion entwickelt. CV-Systeme 
basieren auf den Bereichen Bildverarbeitung und maschinelles 
Lernen und ermöglichen es Produktionssystemen, visuelle Infor-

Bild 1  Relevante Datenklassen und Zuordnung in die Kategorien. Grafik: [20, 21] 
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mationen von optischen Sensoren (i.d.R. Kameras) zu inter -
pretieren und aussagekräftige Erkenntnisse für die Entschei-
dungsfindung und Prozesssteuerung zu gewinnen [5]. Im Pro-
duktionsprozess wird CV eingesetzt, um die Qualitätssicherung 
zu automatisieren und die Mitarbeiter, die bestimmten Produkti-
onsprozesse durchführen, intelligent zu unterstützen.

Die Anwendung von CV in der Produktion sind vielfältig. 
 Einer der etabliertesten Anwendungsfälle ist die visuelle Quali-
tätskontrolle, bei der Kamerasysteme automatisch optische Fehler 
wie Kratzer, Fehlausrichtungen oder fehlende Komponenten mit 
einer höheren Zuverlässigkeit und Konsistenz als manuelle 
 Kontrollen erkennen [6]. Ein weiterer wichtiger Bereich ist die 
Prozessüberwachung, bei der visuelle Daten verwendet werden, 
um Materialflüsse, Maschinenzustände oder Montagesequenzen 
in Echtzeit zu verfolgen [7]. Darüber hinaus unterstützt CV men-
schenzentrierte Aufgaben, beispielsweise durch die Überwachung 
der Ergonomie, die Unterstützung bei der Mitarbeiterschulung 
oder die Ermöglichung adaptiver Anleitungssysteme, die auf die 
aktuellen Tätigkeiten der Mitarbeiter reagieren.

Die zunehmende Komplexität und Varianten von Produkten 
haben die Bedeutung von CV weiter erhöht [8]. Klassische sen-
sorbasierte Ansätze für Qualitätskontrolle (beispielsweise Licht-
schranken, Ultraschallsensor, 3D-Scanner) sind oft auf vordefi-
nierte Messaufgaben beschränkt und bieten keine Flexibilität im 
Umgang mit unvorhergesehenen Abweichungen [9]. Im Gegen-
satz dazu bieten moderne CV-Systeme – insbesondere solche, die 
auf Deep Learning basieren – die Möglichkeit, eine Vielzahl von 
Szenarien zu verallgemeinern, wodurch sie sich besonders für 
 dynamische Produktionsumgebungen eignen [8]. Diese Anpas-
sungsfähigkeit ermöglicht die Erkennung verschiedener Teile, 
Werkzeuge und Montagezustände und schafft neue Möglichkeiten 
für adaptive und kontextspezifische Unterstützungssysteme für 
Mitarbeiter.

Mit Deep Learning und insbesondere der Vorstellung von 
Convolutional Neural Networks (CNNs) hat sich die visuelle 
Objekterkennung in der Produktion rasant weiterentwickelt. Die-
se Modelle sind in der Lage, hierarchische Merkmalsdarstellun-
gen automatisch aus Daten zu lernen, was eine robuste Erken-
nung in komplexen Umgebungen, zum Beispiel unterschiedliche 

Lichtverhältnisse, ungleichmäßiger Hintergrund oder verschiede-
ne Positionierungen des Objekts, ermöglicht [10]. 

Unter den verschiedenen Deep-Learning-basierten Ansätzen 
zur Objekterkennung hat der Algorithmus YOLO in produktions-
orientierten Anwendungen Wesentlichkeit erlangt [11]. YOLO 
steht für „You Only Look Once” (Man schaut nur einmal hin). Es 
handelt sich um ein Modell zur Objekterkennung und Bildseg-
mentierung, das von Redmon et al. an der University of Washing-
ton entwickelt wurde. Der Vorteil von YOLO liegt in seiner 
 Fähigkeit, Objekte in Echtzeit mit hoher Genauigkeit zu erken-
nen, wodurch es sich besonders gut für schnelllebige Montage -
umgebungen eignet, in denen das System sofort und zuverlässig 
reagieren muss [12]. Im Gegensatz zu anderen Methoden wie 
Region-Proposal-Network (RPN) behandelt YOLO die Objekt -
erkennung als ein einziges Regressionsproblem und sagt in einem 
Durchlauf durch das Netzwerk direkt Begrenzungsrahmen und 
Klassenwahrscheinlichkeiten voraus. Dieses Design führt zu er-
heblichen Geschwindigkeitsvorteilen bei gleichzeitig wettbe-
werbsfähiger Erkennungsleistung [13].

Die Kernfunktion von YOLO besteht darin, das Eingabebild in 
ein Raster zu unterteilen, wobei jede Rasterzelle für die Vorhersa-
ge von Begrenzungsrahmen und entsprechenden Wahrscheinlich-
keiten für Objekte zuständig ist, deren Mittelpunkte innerhalb 
der Zelle liegen. Durch diesen einheitlichen Ansatz entfällt die 
Notwendigkeit einer separaten Region-Proposal-Phase, die RPN 
benötigt, so dass die Erkennung in einem einzigen Durchlauf 
durch das neuronale Netzwerk erfolgen kann [11].

Die YOLO-Modelle verwenden CNNs als Basis, um hierar-
chische Merkmalskarten aus dem Eingabebild zu extrahieren. 
Diese Merkmale werden anschließend durch den Algorithmus 
verarbeitet, die vorhersagen [11]:
•  Koordinaten der Begrenzungsrahmen (x- und y-Achse, Breite, 

Höhe) zur Lokalisierung des Objekts
• Objectness Score, der die Wahrscheinlichkeit angibt, dass  

der Rahmen tatsächlich ein Objekt enthält
• Wahrscheinlichkeiten, die bestimmen, zu welcher Kategorie  

der Rahmen gehört
Der Trainingsprozess des YOLO-Algorithmus optimiert eine 
mehrteilige Verlustfunktion, die Lokalisierungsgenauigkeit, Konfi-

Bild 2 CAD Modell von der Baugruppe und die synthetischen Bilder zum Algorithmus-Training. Grafik: RWTH Aachen
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denzschätzung und Segmentierungsleistung ausbalanciert [11]. 
Anders als RPN behandelt YOLO die Objekterkennung als End-
to-End-Optimierungsproblem, so dass das Modell gemeinsame 
Repräsentationen von Aussehen und räumlichen Informationen 
erlernen kann. Diese Struktur steigert nicht nur die Geschwindig-
keit, sondern reduziert auch Fehlsegmentierung durch Hinter-
grundobjekte, da das Modell den globalen Kontext des gesamten 
Bildes berücksichtigt.

Im Bereich Produktion, insbesondere Montage, wird YOLO in 
mehreren Anwendungsfällen eingesetzt [14]: 
•  Teileverifikation: Erkennung spezifischer Bauteile während der 

Montage, um sicherzustellen, dass die richtige Variante verbaut 
wird.

• Werkzeugerkennung: Überprüfung, ob das passende Werkzeug 
verfügbar und korrekt positioniert ist, bevor ein Arbeitsschritt 
(zum Beispiel Schraubenanzug) ausgeführt wird.

•  Mensch-Roboter-Kollaboration: Detektion von Mitarbeiterhän-
den oder Gesten, um eine sichere und adaptive Zusammen -
arbeit mit kollaborativen Robotern zu ermöglichen.

In dieser Arbeit wird YOLO angewendet, um die Funktion der 
Erkennung von bearbeiteten Bauteilen durch den Mitarbeiter zu 
ermöglichen. In Abschnitt 4.1 werden Einzelheiten dazu vor -
gestellt, wie der YOLO-Algorithmus trainiert wird und welche 
Parameter oder Informationen an das Montageanleitungssystem 
übertragen werden, um adaptive und kontextspezifische Arbeits-
anleitungen zu ermöglichen.

3.2 Metadatenmodellierung  
 für kontextspezifische Montageanleitung

Kontextspezifische Montageanleitungen zielen darauf ab, nur 
die Anleitungsinformation zu liefern, die für die Mitarbeiter zu 
der bestimmten Montageaufgabe relevant sind, wodurch der ko-
gnitive Aufwand für die Identifizierung und Interpretation wich-
tiger Details minimiert wird [15]. Um konkrete und exakte Infor-
mation zu liefern, müssen solche Anleitungen auf Komponenten, 
Prozessen und persönliche Merkmale der Mitarbeiter (beispiels-
weise Qualifikation, Sprache, Expertise) angepasst sein, damit die 
bereitgestellten Anleitungen die kognitive Unterstützung verbes-
sern. Während die Bedeutung der Kontextualisierung in der Ferti-
gungsforschung in den letzten zehn Jahren betont wurde, bleibt 
eine konsistente Strukturierung relevanter Informationen nach 
wie vor unerlässlich. Frühere Forschungen definierten den Kon-
text anhand von benutzer-, umgebungs- und systembezogenen 
Attributen und erweiterten diese Definition anschließend, um die 
Prozessrelevanz hervorzuheben [16, 17, 18]. Aus diesen For-
schungen hat sich ein gemeinsames Verständnis von Kontextin-
formationen herauskristallisiert, das sich in vier Kategorien zu-
sammenfassen lässt: Objekt, Prozess, Ressource und Kontext.

Nuy et al. haben ein detailliertes Datenmodell für kontextspe-
zifische Arbeitsanleitungen vorgestellt, das sich am Konzept des 
digitalen Zwillings orientiert [19]. Ihr prozessorientiertes Modell 
identifizierte vier wichtige Kategorien – Produkt, Ressource, Pro-
zess und Kontext – die zusammen die Grundlage für die Bereit-
stellung von Anleitungen bilden. Dies steht in engem Einklang 
mit der umfassenderen Konzeptualisierung von Kontextinforma-
tionen im Fertigungsbereich. Die Definition jeder Kategorie lautet 
wie folgt:
• Objektdaten erfassen die Eigenschaften des Produkts, 

 einschließlich Baugruppen, Unterbaugruppen und deren 

 zugehörigen Bauteilen, sowie entsprechende geometrische 
 Informationen.

• Prozessdaten definieren die für die Ausführung erforderlichen 
Schritte, Abläufe und aufgabenspezifischen Parameter.

• Ressourcendaten umfassen die für Montageaufgaben 
 erforderlichen Werkzeuge, Maschinen und Hilfsstoffe.

• Kontextdaten repräsentieren mitarbeiterbezogene Attribute 
(beispielsweise Fähigkeiten und Erfahrungen), Umweltfaktoren 
(beispielsweise Lärm, Beleuchtung, Klima) und digitale Infra-
struktur (beispielsweise Software und Netzwerkbedingungen).

Während die Theorie von Nuy et al. die Grundlage für die Zu-
ordnung verschiedener Datenklassen während Produktionspro-
zessen liefert, haben Cramer et al. [20] und Liang et al. [21] das 
Meta-Modell für Produktionsdaten (MMPD) eingeführt, das 
 relevante Datenklassen zur Strukturierung heterogener Produkti-
onsdaten festlegt. Das MMPD bietet standardisierte Klassen für 
Produkt, Pre-Produkt, Prozessablauf, Prozessschritt, Maschine, 
Werkzeuge, Sensor, Mitarbeiter und Shopfloor und ermöglicht so 
eine domänenübergreifende konsistente Darstellung von Ferti-
gungsdaten. Durch die Zuordnung der MMPD-Klassen zu den 
vier Kategorien Objekt, Prozess, Ressource und Kontext entsteht 
eine einheitliche Struktur, die Produktionsdaten mit den Infor-
mationsanforderungen von Anleitungssystemen verknüpft. Bei-
spielsweise entsprechen die Klassen „Produkt“ und „Vorprodukt“ 
den Objektdaten, „Prozessschritt“ und „Prozessablauf“ den Pro-
zessdaten, „Maschine“, „Werkzeug“ und „Sensor“ den Ressourcen-
daten und „Mitarbeiter“ und „Fertigungsumgebung“ den wich-
tigsten Aspekten der Kontextdaten.

Die Kombination der von den oben genannten Forschern vor-
geschlagenen Ansätze ermöglicht es, kontextspezifische Arbeits -
anleitungen systematisch durch Produktionsdatenmodelle zu un-
terstützen. Das Konzept des digitalen Zwillings, mit dem physika-
lische und funktionale Eigenschaften von Produkten, Prozessen 
und Ressourcen nachgebildet werden können, erleichtert den 
 bidirektionalen Datenaustausch in Echtzeit und stellt sicher, dass 
Anleitungen anpassungsfähig und genau bleiben. Die Kombinati-
on von Kategorisierungsschemata mit einer Metadatenbasis wie 
dem MMPD harmonisiert nicht nur verschiedene Forschungs-
stränge, sondern bietet auch eine skalierbare und erweiterbare 
Grundlage für intelligente kognitive Unterstützung.

3.3 Entwicklungsbedarf

Wie im Abschnitt 2 dargelegt, besteht das Ziel dieser Arbeit 
darin, die Lücke zwischen der Erkennung der physischen Bauteile 
und der Bereitstellung kontextspezifischer Arbeitsanleitungen zu 
schließen. Die Kategorisierung kontextspezifischer Anleitungen 
bietet zwar einen konzeptionellen Rahmen für die Strukturierung 
von Anleitungsinformationen in die Bereiche Objekt, Prozess, 
Ressource und Kontext, doch gewährleisten diese Kategorien 
 allein nicht, dass die richtige Anleitung zu der entsprechenden 
 Situation und dem passenden Zeitpunkt dargestellt wird. Ebenso 
bietet MMPD eine standardisierte und umfassende Struktur für 
die Organisation heterogener Produktionsdaten, aber es bestimmt 
nicht von sich aus, welche Bauteile dieser Daten für den Mitar-
beiter in einem Montageschritt relevant sind.

Die YOLO-basierte Objekterkennung spielt eine zentrale Rolle 
als Enabler, um diese Lücke zu schließen. Indem es dem System 
ermöglicht, der Bauteil durch Echtzeit-Erkennung von Baugrup-
pen, Unterbaugruppen und Teilen zu „sehen“, stellt YOLO die 
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entscheidende Verbindung zwischen der physischen Arbeitsumge-
bung und dem digitalen Anleitungssystem her. Erkannte Bauteile 
können direkt auf die Objektdatenkategorie kontextspezifischer 
Anleitung abgebildet werden, die dann als Schnittstelle für die 
Identifizierung der relevanten Prozessdaten, zugehörigen Res-
sourcen und Kontextfaktoren dienen.

Eine systematische Lösung zur Zuordnung der Funktion der 
YOLO-basierten Objekterkennung und Zuordnung zu digitalen 
Anleitungen ist erforderlich. Dementsprechend zielt diese syste-
matische Lösung darauf ab, die folgenden Funktionen bereitzu-
stellen:
1.  Automatisierung der Zuordnung physischer Bauteile  

zu digitalen Anleitungsdaten, um den manuellen Such-  
und Interpretationsaufwand für Anleitung zu reduzieren

2. Ermöglichung einer adaptiven Echtzeit-Anleitung, da das Sys-
tem seine Anleitungsdarstellung kontinuierlich entsprechend 
den erkannten Objekten und Prozesszuständen aktualisiert

3.  Einsatz von MMPD, um sicherzustellen, dass Erkennungs -
ergebnisse universell in strukturierte, prozessrelevante 
 Informationen über verschiedene Produktionsumgebungen 
hinweg übertragen werden können

Die entwickelte systematische Lösung zielt darauf ab, eine naht -
lose Pipeline bereitzustellen, die bei der Objekterkennung 
 beginnt, durch Datenmodellzuordnung verbunden ist und bei der 
kontextspezifischen Bereitstellung von Anleitung endet.

4 Systemarchitektur und Lösungsansatz 

Der folgende Abschnitt beschreibt die Module sowie die 
 Systemarchitektur der entwickelten Lösung. Zunächst wird    
Modul I vorgestellt, das auf einem YOLO-basierten Objekterken-
nungsalgorithmus basiert und für die Erfassung der Bauteile in 
Echtzeit zuständig ist. Darauf aufbauend erläutert Modul II die 
Erstellung kontextspezifischer Montageanleitungen auf Basis ei-
ner semantischen Datenstruktur, die die Mitarbeiter gezielt durch 
den jeweiligen Arbeitsschritt führt. Abschließend wird der Infor-
mationsfluss des systematischen Lösungsansatzes beschrieben, der 
den Austausch und die Verknüpfung zwischen den Modulen so-
wie deren Integration in die Benutzeroberfläche veranschaulicht.

4.1 Modul I: YOLO-basierte Objekterkennung

Der YOLO-Algorithmus ist der Kern des Moduls I, das die 
Hauptfunktion der Objekterkennung übernimmt. Das Modul 
 erkennt das Bauteil innerhalb der Montageumgebung und liefert 
die Bauteilinformationen als Eingabe für das Anleitungssystem. 
Um eine robuste Leistung zu erzielen, wird der YOLO-Algorith-
mus anhand synthetischer Bilddaten trainiert, die aus 3D-Model-
len der entsprechenden Bauteile generiert werden. Dieser Ansatz 
 ermöglicht es dem Modul, Bauteilmerkmale unter verschiedenen 
Perspektiven, Lichtverhältnissen und Ausrichtungen zu lernen, 
ohne dass umfangreiche manuelle Annotationen von Daten aus 
der realen Welt erforderlich sind. Durch die Nutzung virtueller 
Modelle kann der Trainingsdatensatz effizient skaliert und diver-
sifiziert werden, wodurch eine Generalisierung auf die physische 
Montageumgebung gewährleistet ist.

Das YOLO-Modul ist mit dem in der Workstation installierten 
Kamerasystem verbunden. Die Kamera erfasst Echtzeitbilder der 
Umgebung des Mitarbeiters, die dann vom trainierten YOLO-
 Algorithmus verarbeitet werden. Der Algorithmus analysiert die 

Bilder in einem einzigen Durchlauf und gibt die Erkennungser-
gebnisse aus, bestehend aus Begrenzungsrahmen und Klassenbe-
zeichnungen der identifizierten Bauteile. Diese Erkennungsergeb-
nisse dienen als digitale Darstellung des physischen Montagezu-
stands und ermöglichen es dem nachfolgenden Anleitungsmodul, 
den relevanten Montageschritt und die damit verbundenen Anlei-
tungen zu bestimmen.

Durch diese Funktionalität stellt das Modul I für YOLO-
 basierte Objekterkennung eine direkte Verbindung zwischen der 
visuellen Realität der Montageumgebung und den strukturierten 
Datenmodellen her, die dem Anleitungssystem zugrunde liegen. 
Es stellt sicher, dass die Anleitungsinformation stets auf den tat-
sächlich am Arbeitsplatz vorhandenen Bauteilen basieren, und 
 ermöglicht so eine kontextspezifische und adaptive Unterstützung 
für die Mitarbeiter, die Montagetätigkeiten durchführen. 

4.2 Modul II: Montageanleitung

Das Montageanleitungsmodul bildet die zweite Kernkompo-
nente des gezielten Systems. Die Funktion dieses Moduls besteht 
darin, dem Mitarbeiter kontextspezifische Anleitungen anzubie-
ten, indem es erkannte Bauteile dynamisch mit strukturierten An-
leitungsinformationen verknüpft. Das Modul basiert auf dem 
MMPD, in dem Datenklassen und ihre Zuordnung zu den Kate-
gorien Objekt, Prozess, Ressource und Kontext vordefiniert sind. 
Diese strukturierte Grundlage gewährleistet Konsistenz, Erweiter-
barkeit und semantische Klarheit bei der Darstellung von 
Montage wissen.

Innerhalb des ontologischen Bearbeitungswerkzeugs werden 
Instanzen nach den Definitionen dieser Datenklassen generiert. 
Beispielsweise kann eine Instanz in der Produktklasse den Namen 
und die Nummer des Bauteils angeben, während eine Instanz in 
der Werkzeugklasse die Verwendung eines Sechskantschlüssels 
definieren kann. In ähnlicher Weise beschreiben Maschinenklas-
sen die erforderlichen Maschinen und Hilfsstoffe, und Mitarbei-
terklassen erfassen mitarbeiterbezogene Attribute wie bevorzugte 
Sprache und Erfahrung. Durch die Abstimmung dieser Instanzen 
auf den entsprechenden Prozessschritt stellt das Modul sicher, 
dass jede Anleitung vollständig kontextualisiert und direkt auf die 
aktuelle Aufgabe anwendbar ist.

Das Modul empfängt die von Modul I mit der YOLO-basier-
ten Objekterkennung generierten Erkennungsergebnisse, die die 
derzeit in der Montageumgebung vorhandenen Bauteile anzeigen. 
Diese Ergebnisse werden als Schlüssel für die Abfrage der ontolo-
gischen Datenstruktur verwendet, um den relevanten Prozess-
schritt und die zugehörigen Informationen abzurufen. Die Aus -
gabe wird dann zusammengestellt, das Produkt-, Ressourcen- und 
Kontextdetails in einem prägnanten Anleitungsformat integriert. 

In der Praxis können die Anleitungsinformationen in verschie-
denen Formaten formuliert werden. Der Ontologie-Editor Proté-
gé kann zum Bearbeiten der Metadaten und zum Erstellen von 
Instanzen verwendet werden. Der Editor bietet auch verschiedene 
Formate zum Exportieren des instanziierten Datenmodells, zum 
Beispiel CSV-, XML-, und JSON-Datei – siehe ein Beispiel in 
Bild 3. Dies ermöglicht die Anwendbarkeit der Anleitungsinfor-
mationen in verschiedenen Implementierungsumgebungen und 
kann an die tatsächlichen Anforderungen angepasst werden.

Durch dieses Design bietet das Montageanleitungsmodul eine 
systematische und adaptive Methode zur Unterstützung der Mit-
arbeiter. Durch die Kombination von semantischer Wissensreprä-
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sentation mit Echtzeit-Objekterkennung wird sichergestellt, dass 
die dem Mitarbeiter präsentierten Informationen nicht nur um-
fassend, sondern auch situationsrelevant sind, wodurch die kogni-
tive Arbeitsbelastung reduziert, und die Montagequalität verbes-
sert wird.

4.3 Informationsfluss  
 des systematischen Lösungsansatz

Das entwickelte System integriert das YOLO-Objekterken-
nungsmodul mit dem Montageanleitungsmodul. Es wird eine 
Pipeline von der Erfassung der realen Montageumgebung bis zur 
Bereitstellung kontextspezifischer Montageanleitung eingerichtet. 
In Bild 4 wird der Informationsfluss dargestellt, der den Infor-
mationsaustausch zwischen den Ebenen zeigt. An diesem 
 Lösungsansatz sind vier Ebenen beteiligt: Arbeitsplatz, YOLO-
Objekterkennung, kontextspezifische Montageanleitungen und 
Benutzeroberfläche.

Der Informationsfluss beginnt mit der Informationseingabe 
vom Arbeitsplatz, wo das Kamerasystem Echtzeitbilder der Mon-
tageumgebung aufnimmt. Diese Bilder liefern eine visuelle Dar-
stellung der aktuellen Umgebung, insbesondere der beteiligten 
Bauteile. Die Daten werden an das YOLO-Objekterkennungsmo-
dul übertragen, das die Eingabe in einem einzigen Vorwärtsgang 
verarbeitet.

In der nächsten Phase analysiert das Objekterkennungsmodul 
die Bilder und gibt Erkennungsergebnisse aus, die aus Begren-
zungsrahmen, Objektbewertungen und Klassenbezeichnungen für 
identifizierte Bauteile bestehen. Diesen identifizierten Bauteilen 
dienen als Anker für die Abfrage des Montageanleitungsmoduls.

Das Montageanleitungsmodul basiert auf dem MMPD, wobei 
vordefinierte Datenklassen die Kategorien Produkt, Prozess, 
 Ressource und Kontext darstellen. Basierend auf den Erkennungs-

ergebnissen des vorherigen Objekterkennungsmoduls ruft das 
Modul die entsprechenden Instanzen aus der Datenbank ab, in 
der die Anleitungsinformationen gespeichert sind. Beispielsweise 
wird ein erkannter Bauteil seiner Produktinstanz (Name, Num-
mer) zugeordnet, die wiederum mit dem zugehörigen Prozess-
schritt verknüpft ist. Dieser Prozessschritt ist weiter mit Ressour-
ceninformationen (zum Beispiel erforderliches Werkzeug wie 
Sechskantschlüssel, erforderliche Maschine) und Kontextdaten 
(zum Beispiel Rolle des Mitarbeiters, Umgebungsparameter) ver-
bunden.

Schließlich kompiliert das System in der Ausgabe die abgerufe-
nen Informationen zu einer kontextspezifischen Anleitung, die 
auf der Benutzeroberfläche dargestellt wird. Die Benutzerober -
fläche enthält nur die für den aktuellen Schritt relevanten Details 
– wie die identifizierten Bauteile, das erforderliche Werkzeug und 
den nächsten Montagevorgang – wodurch der kognitive Aufwand 
für den Mitarbeiter minimiert wird. Die Anleitungen können 
über beliebige Schnittstellen (zum Beispiel Monitor, Tablet oder 
AR-Gerät) angezeigt werden, wodurch sichergestellt wird, dass 
die Anleitungen sowohl anpassungsfähig als auch situationsbezo-
gen sind.

Durch die Verknüpfung von Echtzeiterkennung mit einer 
strukturierten Anleitungsinformation schafft das System einen 
 geschlossenen Informationsfluss: visuelle Eingabe → Objekt -
erkennung → Abruf von Anleitungen → Mitarbeiterunterstüt-
zung. Dieser Arbeitsablauf reduziert direkt den Bedarf des Mitar-
beiters, allgemeine Handbücher zu interpretieren oder varianten-
bezogene Dokumentationen zu durchsuchen.

5 Fazit und Ausblick 

Diese Arbeit stellt die Entwicklung einer Pipeline zur Erstel-
lung der Montageanleitungen vor, die Computer Vision-gestützte 

Bild 3 Darstellung von Metadaten in Protégé und der entsprechenden exportierten XML-Datei. Grafik: RWTH Aachen

Bild 4 Informationsfluss zwischen verschiedenen Ebenen des Lösungsansatz. Grafik: RWTH Aachen
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Objekterkennung mit MMPD-basierten Montageanleitungs -
modellierung integriert. Die Grundidee besteht darin, die Lücke 
zwischen der physischen Montageumgebung und dem virtuellen 
Informationsraum zu schließen, indem der YOLO-Algorithmus 
für die Echtzeit-Erkennung von Bauteilen eingesetzt und die 
 Ergebnisse auf strukturierte Anleitungsinformationen abgebildet 
werden, die aus dem MMPD abgeleitet werden. Durch diese Inte-
gration bietet das System kontextspezifische Anleitungen, die auf 
die erkannten Objekte, die zugehörigen Prozessschritte und die 
erforderlichen Ressourcen zugeschnitten sind. Durch die systema-
tische Kombination von Wahrnehmung und semantischer Model-
lierung begegnet das Framework den Herausforderungen der 
 kognitiven Arbeitsbelastung bei der manuellen Montage und 
schafft die Grundlage für ein adaptives, mitarbeiterzentriertes 
Anleitungssystem.

Die konzeptionelle Pipeline veranschaulicht zwar erfolgreich 
die Integration von Erkennung und Anleitung, doch sind weitere 
Entwicklungen erforderlich, um den Ansatz zu validieren und zu 
verfeinern. Zunächst muss die Pipeline an einer kompletten Pro-
duktmontage getestet werden, um die Leistung über einen End-
to-End-Prozess hinweg und nicht nur an isolierten Komponenten 
zu bewerten. Anschließend soll die Robustheit und Durchführbar-
keit der Pipeline anhand komplexerer Produkte bewertet werden, 
bei denen eine höhere Variabilität der Teile, Montageabläufe und 
Kontextfaktoren die Anpassungsfähigkeit des Systems heraus -
fordern wird. Eine solche Validierung wird wichtige Erkenntnisse 
über die Skalierbarkeit, Verallgemeinerbarkeit und Integration in 
reale industrielle Umgebungen liefern.
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